[1]
A. Mills, R. H. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc. Rev. 22 (1993) 417- 425.
DOI: 10.1039/cs9932200417
Google Scholar
[2]
M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
DOI: 10.1021/cr00033a004
Google Scholar
[3]
A. Mills, S. L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108 (1997) 1-35.
Google Scholar
[4]
D. Chen, M. Sivakumar, A. K. Ray, Heterogeneous photocatalysis in environmental remediation, Dev. Chem. Eng. Mineral Process. 8 (2000) 505-550.
DOI: 10.1002/apj.5500080507
Google Scholar
[5]
X. Chen, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.
DOI: 10.1021/cr0500535
Google Scholar
[6]
L. Zhang, H. Wang, Z. Chen, P. K. Wong, J. Liu, Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications, Appl. Catal. B. 106 (2011) 1-13.
DOI: 10.1016/j.apcatb.2011.05.008
Google Scholar
[7]
M-P. Pileni, Size and shape of inorganic nanocrystals, Nat. Mater. 2 (2003) 145-150.
Google Scholar
[8]
B.L. Abrams, J. P. wilcoxon, Nanosize semiconductors for photooxidation, Critical Rev. Solid State Mater. Sci. 30 (2005) 153-182.
DOI: 10.1080/10408430500200981
Google Scholar
[9]
E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 35 (2006) 583-592.
DOI: 10.1039/b502142c
Google Scholar
[10]
S. Shen, X. Wang, Controlled growth of inorganic nanocrystals: size and surface effects of nuclei, Chem. Commun. 46 (2010) 6891-6899.
DOI: 10.1039/c0cc00900h
Google Scholar
[11]
Y-W. Jun, J-S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes, Angew. Chem. Int. Ed. 45 (2006) 3414-3439.
DOI: 10.1002/anie.200503821
Google Scholar
[12]
F. Wang, R. Tang, H. Yu, P. C. Gibbons, W. E. Buhro, Size- and shape-controlled synthesis of bismuth nanoparticles, Chem. Mater. 20 (2008) 3656-3662.
DOI: 10.1021/cm8004425
Google Scholar
[13]
Q. Huang, S. Zhang, C. Cai, B. Zhou, β-and α-Bi2O3 nanoparticles synthesized via microwave-assisted method and their photocatalytic activity towards the degradation of rhodamine B, Mater. Lett. 65 (2011) 988-990.
DOI: 10.1016/j.matlet.2010.12.055
Google Scholar
[14]
Q. Zhang, W. Gong, J. Wang, X. Ning, Z. Wang, X. Zhao, W. Ren, Z. Zhang, Size-dependent magnetic, photoabsorbing, and photocatalytic properties of single-crystalline Bi2Fe4O9 semiconductor nanocrystals, J. Phys. Chem. C 115 (2011) 25241-25246.
DOI: 10.1021/jp208750n
Google Scholar
[15]
C-T. Dinh, T-D. Nguyen, F. Kleitz, T-O. Do, Shape-controlled synthesis of highly crystalline titania nanocrystals, ACS Nano. 3 (2009) 3737-3743.
DOI: 10.1021/nn900940p
Google Scholar
[16]
X. Zhao, W. Jin, J. Cai, J. Ye, Z. Li, Y. Ma, J. Xie, L. Qi, Shape‐and size‐controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets, Adv. Funct. Mater. 21 (2011) 3554-3563.
DOI: 10.1002/adfm.201100629
Google Scholar
[17]
G. Xiang, Y-G. Wang, D. Wu, T. Li, J. He, J. Li, X. Wang, Size-dependent surface sctivity of rutile and anatase TiO2 nanocrystals: facile surface modification and enhanced photocatalytic performance, Chem. Eur. J. 18 (2012) 4759-4765.
DOI: 10.1002/chem.201102593
Google Scholar
[18]
B. Zhao, F. Chen, Y. Jiao, J. Zhang, Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment, J. Mater. Chem. 20 (2010) 7990-7997.
DOI: 10.1039/c0jm01497d
Google Scholar
[19]
A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1-21.
Google Scholar
[20]
Q. Deng, M. Wei, X. Ding, L. Jiang, B. Ye, K. Wei, Brookite TiO2 nanotubes, Chem. Commun. (2008) 3657-3659.
DOI: 10.1039/b802896f
Google Scholar
[21]
B. Zhao, F. Chen, Q. Huang, J. Zhang, Brookite TiO2 nanoflowers, Chem. Commun. (2009) 5115-5117.
DOI: 10.1039/b909883f
Google Scholar
[22]
D.Reyes-coronado, G. Rodríguez-gattorno, M. E. Espinsa-pesqueira, C. Cab, R. D. Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology. 19 (2008) 145605.
DOI: 10.1088/0957-4484/19/14/145605
Google Scholar
[23]
X. Meng, D-W. Shin, S. M. Yu, J. H. Jung, H. I. Kim, H. M. Lee, Y-H. Han, V. Bhoraskar, J-B. Yoo, Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity, CrystEngComm. 13 (2011) 3021-3029.
DOI: 10.1039/c0ce00765j
Google Scholar
[24]
M. D. Hernández-Alonso, F. Fresno, S. Suárez, J. M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities, Energy Environ. Sci. 2 (2009) 1231-1257.
DOI: 10.1039/b907933e
Google Scholar
[25]
J. H. Kou, J. Gao, Z. S. Li, Z. G. Zou, Research on photocatalytic degradation properties of organics with different new photocatalysts, Curr. Org. Chem. 14 (2010) 728-744.
DOI: 10.2174/138527210790963430
Google Scholar
[26]
S. G. Kumar, L. G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A. 115 (2011) 13211-13241.
DOI: 10.1021/jp204364a
Google Scholar
[27]
D. Zhang, G. Li, J. C. Yu, Advanced photocatalytic nanomaterials for degradation pollutants and generating fuels by sunlight, in L. Zang (Eds.), Energy efficiency and renewable energy through nanotechnology, green energy and technology, Springer-Verlag Ltd., London, 2011, pp.679-716.
DOI: 10.1007/978-0-85729-638-2_20
Google Scholar
[28]
A. D. Paola, E. García-López, G. Marcí, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater. 211-212 (2012) 3-29.
DOI: 10.1016/j.jhazmat.2011.11.050
Google Scholar
[29]
L-P. Zhu, N-C. Bing. L-L. Wang, H-Y. Jin, G-H. Liao, L-J. Wang, Self-assembled 3D porous flowerlike α-Fe2O3 hierarchical nanostructures: synthesis, growth mechanism, and their application in photocatalysis, Dalton. Trans. 41 (2012) 2959-2965.
DOI: 10.1039/c2dt11822j
Google Scholar
[30]
L. Shi, H. Lin, Facile fabrication and optical property of hollow SnO2 spheres and their application in water treatment, Langmuir. 26 (2010) 18718-18722.
DOI: 10.1021/la103769d
Google Scholar
[31]
Z. Xing, B. Geng, X. Li, H. Jiang, C. Feng, T. Ge, Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance, CrystEngComm. 13 (2011) 2137-2142.
DOI: 10.1039/c0ce00741b
Google Scholar
[32]
Y. Qiu, M. Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang, S. Yang, Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis, CrystEngComm. 13 (2011) 1843-1850.
DOI: 10.1039/c0ce00508h
Google Scholar
[33]
T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. Maugé, P. Beaunier, J-P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light, J. Phys. Chem. C. 115 (2011) 5657-5666.
DOI: 10.1021/jp109134z
Google Scholar
[34]
S. Anandan, G-J. Lee, P-K. Chen, C. Fan, J. J. Wu, Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods, Ind. Eng. Chem. Res. 49 (2010) 9729-9737.
DOI: 10.1021/ie101361c
Google Scholar
[35]
G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, H. Fu, Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts, J. Mater. Chem. 21 (2011) 887-892.
DOI: 10.1039/c0jm03040f
Google Scholar
[36]
L. Zhang, Y. Zhu, A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts, Catal. Sci. Technol. 2 (2012) 694-706.
DOI: 10.1039/c2cy00411a
Google Scholar
[37]
Z. He, C. Sun, S. Yang, Y. Ding, H. He, Z. Wang, Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation Mechanism and pathway, J. Hazard. Mater. 162 (2009) 1477-1486.
DOI: 10.1016/j.jhazmat.2008.06.047
Google Scholar
[38]
D. He, L. Wang, H. Li, T. Yan, D. Wang, T. Xie, Self-assembled 3D hierarchical clew-like Bi2WO6 microspheres: synthesis, photo-induced charges transfer properties, and photocatalytic activities, CrystEngComm. 13 (2011) 4053-4059.
DOI: 10.1039/c0ce00918k
Google Scholar
[39]
S. Li, Y-H. Lin, B-P. Zhang, Y. Wang, C-W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors, J. Phys. Chem. C. 114 (2010) 2903-2908.
DOI: 10.1021/jp910401u
Google Scholar
[40]
J. Wu, F. Huang, X. Lü, P. Chen, D. Wan, F. Xu, Improved visible-light photocatalysis of nano-Bi2Sn2O7 with dispersed s-bands, J. Mater. Chem. 21 (2011) 3872-3876.
DOI: 10.1039/c0jm03252b
Google Scholar
[41]
L. Wang, W. Wang, M. Shang, S. Sun, W. Yin, J. Ren, J. Zhou, Visible light responsive bismuth niobate photocatalyst enhanced contaminant degradation and hydrogen generation, J. Mater. Chem. 20 (2010) 8405-8410.
DOI: 10.1039/c0jm01669a
Google Scholar
[42]
J. Wu, F. Huang, X. Lü, P. Chen, One-pot synthesis of BiSbO4 nanophotocatalyst with enhanced visible-light performance, CrystEngComm. 13 (2011) 3920-3924.
DOI: 10.1039/c1ce05025g
Google Scholar
[43]
X. Y. Chen, C. Ma, X. X. Li, P. Chen, J. G. Fang, Hierarchical Bi2CuO4 microspheres: hydrothermal synthesis and catalytic performance in wet oxidation of methylene blue, Catal. Commun. 10 (2009) 1020-1024.
DOI: 10.1016/j.catcom.2008.12.055
Google Scholar
[44]
M. Han, X. Chen, T. Sun, K. Tan, M. S. Tse, Synthesis of mono-dispersed m-BiVO4 octahedral nano-crystals with enhanced visible light photocatalytic properties, CrystEngComm. 13 (2011) 6674-6679.
DOI: 10.1039/c1ce05539a
Google Scholar
[45]
D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, Z. Lin, ZnS nano-architectures: photocatalysis, deactivation and regeneration, Nanoscale. 2 (2010) 2062-2064.
DOI: 10.1039/c0nr00171f
Google Scholar
[46]
T. Wu, X. Zhou, H. Zhang, X. Zhong, Bi2S3 nanostructures: a new photocatalyst, Nano Res. 3 (2010) 379-386.
DOI: 10.1007/s12274-010-1042-0
Google Scholar
[47]
L. Zhang, H. Yang, X. Xie, F. Zhang, L. Li, Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening, J. Alloys Compd. 473 (2009) 65-70.
DOI: 10.1016/j.jallcom.2008.06.018
Google Scholar
[48]
Y. Zheng, F. Duan, M. Chen, Y. Xie, Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed, J. Mol. Catal. A: Chem. 317 (2010) 34-40.
DOI: 10.1016/j.molcata.2009.10.018
Google Scholar
[49]
J. Xiong, G. Cheng, Z. Lu, J. Tang, X. Yu, R. Chen, BiOCOOH hierarchical nanostructures: shape-controlled solvothermal synthesis and photocatalytic degradation performances, CrystEngComm. 13 (2011) 2381-2390.
DOI: 10.1039/c0ce00705f
Google Scholar
[50]
F. Duan, Y. Zheng, L. Liu, M. Chen, Y. Xie, Synthesis and photocatalytic behaviour of 3D flowerlike bismuth oxide formate architectures, Mater. Lett. 64 (2010) 1566-1569.
DOI: 10.1016/j.matlet.2010.04.046
Google Scholar
[51]
J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions, Chem. Mater. 19 (2007) 366-373.
DOI: 10.1021/cm061671k
Google Scholar
[52]
X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C. 112 (2008) 747-753.
DOI: 10.1021/jp077471t
Google Scholar
[53]
Z. Deng, D. Chen, B. Peng, F. Tang, From bulk metal Bi to two-dimensional well-Crystallized BiOX (X = Cl, Br) micro- and nanostructures synthesis and characterization, Cryst. Growth. Des. 8 (2008) 2995-3003.
DOI: 10.1021/cg800116m
Google Scholar
[54]
I-S. Cho, D. W. Kim, S. Lee, C. H. Kwak, S-T. Bae, J. H. Noh, S. H. Yoon, H. S. Jung, D-W. Kim, K. S. Hong, Synthesis of Cu2PO4OH hierarchical superstructures with photocatalytic activity in visible light, Adv. Funct. Mater. 18 (2008) 2154-2162.
DOI: 10.1002/adfm.200800167
Google Scholar
[55]
H. Cheng, B. Huang, K. Yang, Z. Wang, X. Qin, X. Zhang, Y. Dai, .Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity, ChemPhysChem. 11 (2010) 2167-2173.
DOI: 10.1002/cphc.200901017
Google Scholar
[56]
R. Chen, M. H. So, J. Yang, F. deng, C-M. Che. H. Sun, Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate, Chem. Comm. (2006) 2265-2267.
DOI: 10.1039/b601764a
Google Scholar
[57]
R. Chen, G. Cheng, M. H. So, J. Wu, Z. Lu, C-M. Che, H. Sun, Bismuth subcarbonate nanoparticles fabricated by water-in-oil microemulsion-assisted hydrothermal process exhibit anti-Helicobacter pylori properties, Mater. Res. Bull. 45 (2010) 654-658.
DOI: 10.1016/j.materresbull.2009.12.035
Google Scholar
[58]
F. Dong, Y. Sun, M. Fu, W-K. Ho, S. C. Lee, Z. Wu, Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst, Langmuir. 28 (2012) 766-773.
DOI: 10.1021/la202752q
Google Scholar
[59]
X-F. Cao, L. Zhang, X-T. Chen, Z. L. Xue, Persimmon-like (BiO)2CO3 microstructures: hydrothermal preparation, photocatalytic properties and their conversion into Bi2S3, CrystEngComm. 13 (2011) 1939-1945.
DOI: 10.1039/c0ce00324g
Google Scholar
[60]
G. Cheng, J. Wu, F. Xiao, H. Yu, Z. Lu, X. Yu, R. Chen, Synthesis of bismuth micro- and nanospheres by a simple refluxing method, Mater. Lett. 63 (2009) 2239-2242.
DOI: 10.1016/j.matlet.2009.07.045
Google Scholar
[61]
G. Cheng, H. Yang, K. Rong, Z. Lu, X. Yu, R. Chen, Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials, J. Solid. State. Chem. 183 (2010) 1878-1883.
DOI: 10.1016/j.jssc.2010.06.004
Google Scholar
[62]
J. Tang, G. Cheng, H. Zhou, H. Yang, Z. Lu, R. Chen, Shape-dependent photocatalytic activities of bismuth subcarbonate nanostructures, J. Nanosci. Nanotechnol. 12 (2012) 4028- 4034.
DOI: 10.1166/jnn.2012.6168
Google Scholar
[63]
Y. Liu, Z. Wang, B. Huang, K. Yang, X. Zhang, X. Qin, Y. Dai, Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet, Appl. Surf. Sci. 257 (2010) 172-175.
DOI: 10.1016/j.apsusc.2010.06.058
Google Scholar
[64]
F. Dong, S. C. Lee, Z. Wu, H. Huang, M. Fu, W-K. Ho, S. Zou, B. Wang, Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air, J. Hazard. Mater. 195 (2011) 346-354.
DOI: 10.1016/j.jhazmat.2011.08.050
Google Scholar
[65]
T. Zhao, J. Zai, M. Xu, Q. Zou, Y. Su, K. Wang, X. Qian, Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity, CrystEngComm. 13 (2011) 4010-4017.
DOI: 10.1039/c1ce05113j
Google Scholar
[66]
L. Chen, R. Huang, S-F. Yin, S-L. Luo, C-T. Au, .Flower-like Bi2O2CO3: facile synthesis and their photocatalytic application in treatment of dye-containing wastewater, Chem. Eng. J. 193-194 (2012) 123-130.
DOI: 10.1016/j.cej.2012.04.023
Google Scholar
[67]
F. Dong, W-K. Ho, S. C. Lee, Z. Wu, M. Fu, S. Zou, Y. Huang, Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation, J. Mater. Chem. 21 (2011) 12428-12436.
DOI: 10.1039/c1jm11840d
Google Scholar
[68]
F. dong, A. Zheng, Y. Sun, M. Fu, B. Jiang, W-K. Ho, S. C. Lee, Z. Wu, One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets, CrystEngComm. 14 (2012) 3534-3544.
DOI: 10.1039/c2ce06677g
Google Scholar
[69]
F. Dong, Y. Sun, W-K. Ho, Z. Wu, Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures, Dalton. Trans. 41 (2012) 8270-8284.
DOI: 10.1039/c2dt30570d
Google Scholar
[70]
P. Madhusudan, J. Ran, J. Zhang, J. Yu, G. Liu, Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity, Appl. Catal. B 110 (2011) 286-295.
DOI: 10.1016/j.apcatb.2011.09.014
Google Scholar
[71]
L. Chen, S-F. Yin, S-L. Luo, R. Huang, Q. Zhang, T. Hong, P. C. T. Au, Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater, Ind. Eng. Chem. Res. 51 (2012) 6760-6768.
DOI: 10.1021/ie300567y
Google Scholar
[72]
X. Y. Chen, H. S. Huh, S. W. Lee, Controlled synthesis of bismuth oxo nanoscale crystals (BiOCl, Bi12O17Cl2, α-Bi2O3, and (BiO)2CO3) by solution-phase methods, J. Solid. State. Chem. 180 (2007) 2510-2516.
DOI: 10.1016/j.jssc.2007.06.030
Google Scholar
[73]
L. Zhang, Y. Hashimoto, T. Taishi, I. Nakamura, Q-Q. Ni, Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process, Appl. Surf. Sci. 257 (2011) 6577-6582.
DOI: 10.1016/j.apsusc.2011.02.081
Google Scholar
[74]
Z. Xu, I. Tabata, K. Hirogaki, K. Hisada, T. Wang, S. Wang, T. Hori, UV-induced formation of activated Bi2O3 nanoflake: an enhanced visible light driven photocatalyst by platinum loading, RSC Advances. 2 (2012) 103-106.
DOI: 10.1039/c1ra00638j
Google Scholar
[75]
G. E. Tobon-zapata, S. B. Etcheverry, E. J. Baran, Vibrational spectrum of bismuth subcarbonate, J. Mater. Sci. Lett. 16 (1997) 656-657.
Google Scholar
[76]
P. Taylor, S. Sunder, V. J. Lopata, Structure, spectra, and stability of solid bismuth carbonates, Can. J. Chem. 62 (1984) 2863-2873.
DOI: 10.1139/v84-484
Google Scholar
[77]
C. Greaves, S. K. Blower, Structural relationships between Bi2O2CO3 and β-Bi2O3, Mat. Res. Bull. 23 (1988) 1001-1008.
DOI: 10.1016/0025-5408(88)90055-4
Google Scholar
[78]
J. D. Grice, A Solution to the crystal structures of bismutite and beyerite, Can. Mineral. 40 (2002) 693-698.
DOI: 10.2113/gscanmin.40.2.693
Google Scholar
[79]
Y. Xuzhuang, D. Yang, Z. Huaiyong, L. Jiangwen, W. N. Martins, R. Frost, L. Daniel, S. Yuenian, Mesoporous structure with size controllable anatase attached on silicate layers for efficient photocatalysis, J. Phys. Chem. C. 113 (2009) 8243-8248.
DOI: 10.1021/jp900622k
Google Scholar
[80]
A. R. Khataee, M. B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes, J. Mol. Catal. A: Chem. 328 (2010) 8-26.
DOI: 10.1016/j.molcata.2010.05.023
Google Scholar
[81]
R. Vinu, S. U. Akki, G. Madras, Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2, J. Hazard. Mater. 176 (2010) 765-773.
DOI: 10.1016/j.jhazmat.2009.11.101
Google Scholar
[82]
A. M-D. L. Cruz, S. O. Alfaro, Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation: photoassisted degradation of organic dyes under vis-irradiation, J. Mol. Catal. A: Chem. 320 (2010) 85-91.
DOI: 10.1016/j.molcata.2010.01.008
Google Scholar
[83]
Z. Ai, W. Ho, S. Lee, L. Zhang, Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light, Environ. Sci. Technol. 43 (2009) 4143-4150.
DOI: 10.1021/es9004366
Google Scholar