Emergent Synthesis of Bismuth Subcarbonate Nanomaterials with Various Morphologies towards Photocatalytic Activities - An Overview

Article Preview

Abstract:

The unique properties of bismuth subcarbonate nanomaterials provide benefits in remediation, pollution prevention, and efficient use of resources; however, the greatest contribution to green chemistry is likely to be the new manufacturing strategies available through nanoscience. Thus, the present overview mainly focuses on the synthesis of diverse bismuth subcarbonates nanostructures such as nanoparticles, nanotubes, nanoplates, nanosheets, hollow microspheres and microstructures resembles rose, sponge, flower and persimmon-like morphologies; and studied their photocatalytic activities to reveal the morphological features of the precursor. Moreover the wide characterizations of these materials using various spectroscopic and microscopic techniques; and the probable catalytic mechanism based on their diverse architectures were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-193

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Mills, R. H. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc. Rev. 22 (1993) 417- 425.

DOI: 10.1039/cs9932200417

Google Scholar

[2] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[3] A. Mills, S. L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108 (1997) 1-35.

Google Scholar

[4] D. Chen, M. Sivakumar, A. K. Ray, Heterogeneous photocatalysis in environmental remediation, Dev. Chem. Eng. Mineral Process. 8 (2000) 505-550.

DOI: 10.1002/apj.5500080507

Google Scholar

[5] X. Chen, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[6] L. Zhang, H. Wang, Z. Chen, P. K. Wong, J. Liu, Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications, Appl. Catal. B. 106 (2011) 1-13.

DOI: 10.1016/j.apcatb.2011.05.008

Google Scholar

[7] M-P. Pileni, Size and shape of inorganic nanocrystals, Nat. Mater. 2 (2003) 145-150.

Google Scholar

[8] B.L. Abrams, J. P. wilcoxon, Nanosize semiconductors for photooxidation, Critical Rev. Solid State Mater. Sci. 30 (2005) 153-182.

DOI: 10.1080/10408430500200981

Google Scholar

[9] E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 35 (2006) 583-592.

DOI: 10.1039/b502142c

Google Scholar

[10] S. Shen, X. Wang, Controlled growth of inorganic nanocrystals: size and surface effects of nuclei, Chem. Commun. 46 (2010) 6891-6899.

DOI: 10.1039/c0cc00900h

Google Scholar

[11] Y-W. Jun, J-S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes, Angew. Chem. Int. Ed. 45 (2006) 3414-3439.

DOI: 10.1002/anie.200503821

Google Scholar

[12] F. Wang, R. Tang, H. Yu, P. C. Gibbons, W. E. Buhro, Size- and shape-controlled synthesis of bismuth nanoparticles, Chem. Mater. 20 (2008) 3656-3662.

DOI: 10.1021/cm8004425

Google Scholar

[13] Q. Huang, S. Zhang, C. Cai, B. Zhou, β-and α-Bi2O3 nanoparticles synthesized via microwave-assisted method and their photocatalytic activity towards the degradation of rhodamine B, Mater. Lett. 65 (2011) 988-990.

DOI: 10.1016/j.matlet.2010.12.055

Google Scholar

[14] Q. Zhang, W. Gong, J. Wang, X. Ning, Z. Wang, X. Zhao, W. Ren, Z. Zhang, Size-dependent magnetic, photoabsorbing, and photocatalytic properties of single-crystalline Bi2Fe4O9 semiconductor nanocrystals, J. Phys. Chem. C 115 (2011) 25241-25246.

DOI: 10.1021/jp208750n

Google Scholar

[15] C-T. Dinh, T-D. Nguyen, F. Kleitz, T-O. Do, Shape-controlled synthesis of highly crystalline titania nanocrystals, ACS Nano. 3 (2009) 3737-3743.

DOI: 10.1021/nn900940p

Google Scholar

[16] X. Zhao, W. Jin, J. Cai, J. Ye, Z. Li, Y. Ma, J. Xie, L. Qi, Shape‐and size‐controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets, Adv. Funct. Mater. 21 (2011) 3554-3563.

DOI: 10.1002/adfm.201100629

Google Scholar

[17] G. Xiang, Y-G. Wang, D. Wu, T. Li, J. He, J. Li, X. Wang, Size-dependent surface sctivity of rutile and anatase TiO2 nanocrystals: facile surface modification and enhanced photocatalytic performance, Chem. Eur. J. 18 (2012) 4759-4765.

DOI: 10.1002/chem.201102593

Google Scholar

[18] B. Zhao, F. Chen, Y. Jiao, J. Zhang, Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment, J. Mater. Chem. 20 (2010) 7990-7997.

DOI: 10.1039/c0jm01497d

Google Scholar

[19] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1-21.

Google Scholar

[20] Q. Deng, M. Wei, X. Ding, L. Jiang, B. Ye, K. Wei, Brookite TiO2 nanotubes, Chem. Commun. (2008) 3657-3659.

DOI: 10.1039/b802896f

Google Scholar

[21] B. Zhao, F. Chen, Q. Huang, J. Zhang, Brookite TiO2 nanoflowers, Chem. Commun. (2009) 5115-5117.

DOI: 10.1039/b909883f

Google Scholar

[22] D.Reyes-coronado, G. Rodríguez-gattorno, M. E. Espinsa-pesqueira, C. Cab, R. D. Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology. 19 (2008) 145605.

DOI: 10.1088/0957-4484/19/14/145605

Google Scholar

[23] X. Meng, D-W. Shin, S. M. Yu, J. H. Jung, H. I. Kim, H. M. Lee, Y-H. Han, V. Bhoraskar, J-B. Yoo, Growth of hierarchical TiO2 nanostructures on anatase nanofibers and their application in photocatalytic activity, CrystEngComm. 13 (2011) 3021-3029.

DOI: 10.1039/c0ce00765j

Google Scholar

[24] M. D. Hernández-Alonso, F. Fresno, S. Suárez, J. M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities, Energy Environ. Sci. 2 (2009) 1231-1257.

DOI: 10.1039/b907933e

Google Scholar

[25] J. H. Kou, J. Gao, Z. S. Li, Z. G. Zou, Research on photocatalytic degradation properties of organics with different new photocatalysts, Curr. Org. Chem. 14 (2010) 728-744.

DOI: 10.2174/138527210790963430

Google Scholar

[26] S. G. Kumar, L. G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A. 115 (2011) 13211-13241.

DOI: 10.1021/jp204364a

Google Scholar

[27] D. Zhang, G. Li, J. C. Yu, Advanced photocatalytic nanomaterials for degradation pollutants and generating fuels by sunlight, in L. Zang (Eds.), Energy efficiency and renewable energy through nanotechnology, green energy and technology, Springer-Verlag Ltd., London, 2011, pp.679-716.

DOI: 10.1007/978-0-85729-638-2_20

Google Scholar

[28] A. D. Paola, E. García-López, G. Marcí, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater. 211-212 (2012) 3-29.

DOI: 10.1016/j.jhazmat.2011.11.050

Google Scholar

[29] L-P. Zhu, N-C. Bing. L-L. Wang, H-Y. Jin, G-H. Liao, L-J. Wang, Self-assembled 3D porous flowerlike α-Fe2O3 hierarchical nanostructures: synthesis, growth mechanism, and their application in photocatalysis, Dalton. Trans. 41 (2012) 2959-2965.

DOI: 10.1039/c2dt11822j

Google Scholar

[30] L. Shi, H. Lin, Facile fabrication and optical property of hollow SnO2 spheres and their application in water treatment, Langmuir. 26 (2010) 18718-18722.

DOI: 10.1021/la103769d

Google Scholar

[31] Z. Xing, B. Geng, X. Li, H. Jiang, C. Feng, T. Ge, Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance, CrystEngComm. 13 (2011) 2137-2142.

DOI: 10.1039/c0ce00741b

Google Scholar

[32] Y. Qiu, M. Yang, H. Fan, Y. Zuo, Y. Shao, Y. Xu, X. Yang, S. Yang, Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis, CrystEngComm. 13 (2011) 1843-1850.

DOI: 10.1039/c0ce00508h

Google Scholar

[33] T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. Maugé, P. Beaunier, J-P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light, J. Phys. Chem. C. 115 (2011) 5657-5666.

DOI: 10.1021/jp109134z

Google Scholar

[34] S. Anandan, G-J. Lee, P-K. Chen, C. Fan, J. J. Wu, Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods, Ind. Eng. Chem. Res. 49 (2010) 9729-9737.

DOI: 10.1021/ie101361c

Google Scholar

[35] G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, H. Fu, Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts, J. Mater. Chem. 21 (2011) 887-892.

DOI: 10.1039/c0jm03040f

Google Scholar

[36] L. Zhang, Y. Zhu, A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts, Catal. Sci. Technol. 2 (2012) 694-706.

DOI: 10.1039/c2cy00411a

Google Scholar

[37] Z. He, C. Sun, S. Yang, Y. Ding, H. He, Z. Wang, Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation Mechanism and pathway, J. Hazard. Mater. 162 (2009) 1477-1486.

DOI: 10.1016/j.jhazmat.2008.06.047

Google Scholar

[38] D. He, L. Wang, H. Li, T. Yan, D. Wang, T. Xie, Self-assembled 3D hierarchical clew-like Bi2WO6 microspheres: synthesis, photo-induced charges transfer properties, and photocatalytic activities, CrystEngComm. 13 (2011) 4053-4059.

DOI: 10.1039/c0ce00918k

Google Scholar

[39] S. Li, Y-H. Lin, B-P. Zhang, Y. Wang, C-W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors, J. Phys. Chem. C. 114 (2010) 2903-2908.

DOI: 10.1021/jp910401u

Google Scholar

[40] J. Wu, F. Huang, X. Lü, P. Chen, D. Wan, F. Xu, Improved visible-light photocatalysis of nano-Bi2Sn2O7 with dispersed s-bands, J. Mater. Chem. 21 (2011) 3872-3876.

DOI: 10.1039/c0jm03252b

Google Scholar

[41] L. Wang, W. Wang, M. Shang, S. Sun, W. Yin, J. Ren, J. Zhou, Visible light responsive bismuth niobate photocatalyst enhanced contaminant degradation and hydrogen generation, J. Mater. Chem. 20 (2010) 8405-8410.

DOI: 10.1039/c0jm01669a

Google Scholar

[42] J. Wu, F. Huang, X. Lü, P. Chen, One-pot synthesis of BiSbO4 nanophotocatalyst with enhanced visible-light performance, CrystEngComm. 13 (2011) 3920-3924.

DOI: 10.1039/c1ce05025g

Google Scholar

[43] X. Y. Chen, C. Ma, X. X. Li, P. Chen, J. G. Fang, Hierarchical Bi2CuO4 microspheres: hydrothermal synthesis and catalytic performance in wet oxidation of methylene blue, Catal. Commun. 10 (2009) 1020-1024.

DOI: 10.1016/j.catcom.2008.12.055

Google Scholar

[44] M. Han, X. Chen, T. Sun, K. Tan, M. S. Tse, Synthesis of mono-dispersed m-BiVO4 octahedral nano-crystals with enhanced visible light photocatalytic properties, CrystEngComm. 13 (2011) 6674-6679.

DOI: 10.1039/c1ce05539a

Google Scholar

[45] D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, Z. Lin, ZnS nano-architectures: photocatalysis, deactivation and regeneration, Nanoscale. 2 (2010) 2062-2064.

DOI: 10.1039/c0nr00171f

Google Scholar

[46] T. Wu, X. Zhou, H. Zhang, X. Zhong, Bi2S3 nanostructures: a new photocatalyst, Nano Res. 3 (2010) 379-386.

DOI: 10.1007/s12274-010-1042-0

Google Scholar

[47] L. Zhang, H. Yang, X. Xie, F. Zhang, L. Li, Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening, J. Alloys Compd. 473 (2009) 65-70.

DOI: 10.1016/j.jallcom.2008.06.018

Google Scholar

[48] Y. Zheng, F. Duan, M. Chen, Y. Xie, Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed, J. Mol. Catal. A: Chem. 317 (2010) 34-40.

DOI: 10.1016/j.molcata.2009.10.018

Google Scholar

[49] J. Xiong, G. Cheng, Z. Lu, J. Tang, X. Yu, R. Chen, BiOCOOH hierarchical nanostructures: shape-controlled solvothermal synthesis and photocatalytic degradation performances, CrystEngComm. 13 (2011) 2381-2390.

DOI: 10.1039/c0ce00705f

Google Scholar

[50] F. Duan, Y. Zheng, L. Liu, M. Chen, Y. Xie, Synthesis and photocatalytic behaviour of 3D flowerlike bismuth oxide formate architectures, Mater. Lett. 64 (2010) 1566-1569.

DOI: 10.1016/j.matlet.2010.04.046

Google Scholar

[51] J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions, Chem. Mater. 19 (2007) 366-373.

DOI: 10.1021/cm061671k

Google Scholar

[52] X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C. 112 (2008) 747-753.

DOI: 10.1021/jp077471t

Google Scholar

[53] Z. Deng, D. Chen, B. Peng, F. Tang, From bulk metal Bi to two-dimensional well-Crystallized BiOX (X = Cl, Br) micro- and nanostructures synthesis and characterization, Cryst. Growth. Des. 8 (2008) 2995-3003.

DOI: 10.1021/cg800116m

Google Scholar

[54] I-S. Cho, D. W. Kim, S. Lee, C. H. Kwak, S-T. Bae, J. H. Noh, S. H. Yoon, H. S. Jung, D-W. Kim, K. S. Hong, Synthesis of Cu2PO4OH hierarchical superstructures with photocatalytic activity in visible light, Adv. Funct. Mater. 18 (2008) 2154-2162.

DOI: 10.1002/adfm.200800167

Google Scholar

[55] H. Cheng, B. Huang, K. Yang, Z. Wang, X. Qin, X. Zhang, Y. Dai, .Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity, ChemPhysChem. 11 (2010) 2167-2173.

DOI: 10.1002/cphc.200901017

Google Scholar

[56] R. Chen, M. H. So, J. Yang, F. deng, C-M. Che. H. Sun, Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate, Chem. Comm. (2006) 2265-2267.

DOI: 10.1039/b601764a

Google Scholar

[57] R. Chen, G. Cheng, M. H. So, J. Wu, Z. Lu, C-M. Che, H. Sun, Bismuth subcarbonate nanoparticles fabricated by water-in-oil microemulsion-assisted hydrothermal process exhibit anti-Helicobacter pylori properties, Mater. Res. Bull. 45 (2010) 654-658.

DOI: 10.1016/j.materresbull.2009.12.035

Google Scholar

[58] F. Dong, Y. Sun, M. Fu, W-K. Ho, S. C. Lee, Z. Wu, Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst, Langmuir. 28 (2012) 766-773.

DOI: 10.1021/la202752q

Google Scholar

[59] X-F. Cao, L. Zhang, X-T. Chen, Z. L. Xue, Persimmon-like (BiO)2CO3 microstructures: hydrothermal preparation, photocatalytic properties and their conversion into Bi2S3, CrystEngComm. 13 (2011) 1939-1945.

DOI: 10.1039/c0ce00324g

Google Scholar

[60] G. Cheng, J. Wu, F. Xiao, H. Yu, Z. Lu, X. Yu, R. Chen, Synthesis of bismuth micro- and nanospheres by a simple refluxing method, Mater. Lett. 63 (2009) 2239-2242.

DOI: 10.1016/j.matlet.2009.07.045

Google Scholar

[61] G. Cheng, H. Yang, K. Rong, Z. Lu, X. Yu, R. Chen, Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials, J. Solid. State. Chem. 183 (2010) 1878-1883.

DOI: 10.1016/j.jssc.2010.06.004

Google Scholar

[62] J. Tang, G. Cheng, H. Zhou, H. Yang, Z. Lu, R. Chen, Shape-dependent photocatalytic activities of bismuth subcarbonate nanostructures, J. Nanosci. Nanotechnol. 12 (2012) 4028- 4034.

DOI: 10.1166/jnn.2012.6168

Google Scholar

[63] Y. Liu, Z. Wang, B. Huang, K. Yang, X. Zhang, X. Qin, Y. Dai, Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet, Appl. Surf. Sci. 257 (2010) 172-175.

DOI: 10.1016/j.apsusc.2010.06.058

Google Scholar

[64] F. Dong, S. C. Lee, Z. Wu, H. Huang, M. Fu, W-K. Ho, S. Zou, B. Wang, Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air, J. Hazard. Mater. 195 (2011) 346-354.

DOI: 10.1016/j.jhazmat.2011.08.050

Google Scholar

[65] T. Zhao, J. Zai, M. Xu, Q. Zou, Y. Su, K. Wang, X. Qian, Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity, CrystEngComm. 13 (2011) 4010-4017.

DOI: 10.1039/c1ce05113j

Google Scholar

[66] L. Chen, R. Huang, S-F. Yin, S-L. Luo, C-T. Au, .Flower-like Bi2O2CO3: facile synthesis and their photocatalytic application in treatment of dye-containing wastewater, Chem. Eng. J. 193-194 (2012) 123-130.

DOI: 10.1016/j.cej.2012.04.023

Google Scholar

[67] F. Dong, W-K. Ho, S. C. Lee, Z. Wu, M. Fu, S. Zou, Y. Huang, Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation, J. Mater. Chem. 21 (2011) 12428-12436.

DOI: 10.1039/c1jm11840d

Google Scholar

[68] F. dong, A. Zheng, Y. Sun, M. Fu, B. Jiang, W-K. Ho, S. C. Lee, Z. Wu, One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets, CrystEngComm. 14 (2012) 3534-3544.

DOI: 10.1039/c2ce06677g

Google Scholar

[69] F. Dong, Y. Sun, W-K. Ho, Z. Wu, Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures, Dalton. Trans. 41 (2012) 8270-8284.

DOI: 10.1039/c2dt30570d

Google Scholar

[70] P. Madhusudan, J. Ran, J. Zhang, J. Yu, G. Liu, Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity, Appl. Catal. B 110 (2011) 286-295.

DOI: 10.1016/j.apcatb.2011.09.014

Google Scholar

[71] L. Chen, S-F. Yin, S-L. Luo, R. Huang, Q. Zhang, T. Hong, P. C. T. Au, Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater, Ind. Eng. Chem. Res. 51 (2012) 6760-6768.

DOI: 10.1021/ie300567y

Google Scholar

[72] X. Y. Chen, H. S. Huh, S. W. Lee, Controlled synthesis of bismuth oxo nanoscale crystals (BiOCl, Bi12O17Cl2, α-Bi2O3, and (BiO)2CO3) by solution-phase methods, J. Solid. State. Chem. 180 (2007) 2510-2516.

DOI: 10.1016/j.jssc.2007.06.030

Google Scholar

[73] L. Zhang, Y. Hashimoto, T. Taishi, I. Nakamura, Q-Q. Ni, Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process, Appl. Surf. Sci. 257 (2011) 6577-6582.

DOI: 10.1016/j.apsusc.2011.02.081

Google Scholar

[74] Z. Xu, I. Tabata, K. Hirogaki, K. Hisada, T. Wang, S. Wang, T. Hori, UV-induced formation of activated Bi2O3 nanoflake: an enhanced visible light driven photocatalyst by platinum loading, RSC Advances. 2 (2012) 103-106.

DOI: 10.1039/c1ra00638j

Google Scholar

[75] G. E. Tobon-zapata, S. B. Etcheverry, E. J. Baran, Vibrational spectrum of bismuth subcarbonate, J. Mater. Sci. Lett. 16 (1997) 656-657.

Google Scholar

[76] P. Taylor, S. Sunder, V. J. Lopata, Structure, spectra, and stability of solid bismuth carbonates, Can. J. Chem. 62 (1984) 2863-2873.

DOI: 10.1139/v84-484

Google Scholar

[77] C. Greaves, S. K. Blower, Structural relationships between Bi2O2CO3 and β-Bi2O3, Mat. Res. Bull. 23 (1988) 1001-1008.

DOI: 10.1016/0025-5408(88)90055-4

Google Scholar

[78] J. D. Grice, A Solution to the crystal structures of bismutite and beyerite, Can. Mineral. 40 (2002) 693-698.

DOI: 10.2113/gscanmin.40.2.693

Google Scholar

[79] Y. Xuzhuang, D. Yang, Z. Huaiyong, L. Jiangwen, W. N. Martins, R. Frost, L. Daniel, S. Yuenian, Mesoporous structure with size controllable anatase attached on silicate layers for efficient photocatalysis, J. Phys. Chem. C. 113 (2009) 8243-8248.

DOI: 10.1021/jp900622k

Google Scholar

[80] A. R. Khataee, M. B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes, J. Mol. Catal. A: Chem. 328 (2010) 8-26.

DOI: 10.1016/j.molcata.2010.05.023

Google Scholar

[81] R. Vinu, S. U. Akki, G. Madras, Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2, J. Hazard. Mater. 176 (2010) 765-773.

DOI: 10.1016/j.jhazmat.2009.11.101

Google Scholar

[82] A. M-D. L. Cruz, S. O. Alfaro, Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation: photoassisted degradation of organic dyes under vis-irradiation, J. Mol. Catal. A: Chem. 320 (2010) 85-91.

DOI: 10.1016/j.molcata.2010.01.008

Google Scholar

[83] Z. Ai, W. Ho, S. Lee, L. Zhang, Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light, Environ. Sci. Technol. 43 (2009) 4143-4150.

DOI: 10.1021/es9004366

Google Scholar