[1]
R. J. Tayade, R. G. Kulkarni, R. V. Jasra, Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2, Ind. Eng. Chem. Res. 45 (2006) 922-927.
DOI: 10.1021/ie051060m
Google Scholar
[2]
B. E. Haigler, J. C. Spain, Biotransformation of nitrobenzene by bacteria containing toluene degradation pathways, Appl. Environ. Microbiol. 57 (1991) 3156-3162.
DOI: 10.1128/aem.57.11.3156-3162.1991
Google Scholar
[3]
R. J. Tayade, D. L. Dey, Synthesis and characterization of titanium dioxide nanotube for photocatalytic degradation of aqueous nitrobenzene in the presence of sunlight, Mater. Sci. Forum 657 (2010) 62-74.
DOI: 10.4028/www.scientific.net/msf.657.62
Google Scholar
[4]
R. J. Tayade, T.S. Natarajan, H. C. Bajaj, Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes, Ind. Eng. Chem. Res.48 (2009)10262-10267.
DOI: 10.1021/ie9012437
Google Scholar
[5]
T. S.Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, R. J. Tayade, Study on UV- LED/TiO2 process for degradation of Rhodamine B dye, Chem. Eng. J. 169 (2011) 126-134.
DOI: 10.1016/j.cej.2011.02.066
Google Scholar
[6]
T. S.Natarajan, K. Natarajan, H. C. Bajaj and R. J. Tayade, Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application, Ind. Eng. Chem. Res. 50 (2011) 7753-7762.
DOI: 10.1021/ie200493k
Google Scholar
[7]
K. Natarajan, T. S.Natarajan, H. C. Bajaj, R. J. Tayade, Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes, Chem. Eng. J. 178 (2011) 40-49.
DOI: 10.1016/j.cej.2011.10.007
Google Scholar
[8]
R. J. Tayade, P. K. Surolia, R. G. Kulkarni, R. V. Jasra, Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2, Sci. Tech. Adv. Mater. 8 (2007) 455-462.
DOI: 10.1016/j.stam.2007.05.006
Google Scholar
[9]
M. A. Lazar, R. J. Tayade, H. C. Bajaj, R. V. Jasra, Correlation of surface properties and photocatalytic activity of nanocrystalline TiO2 on the synthesis route, Nano Hybrids 1 (2012) 57-80.
DOI: 10.4028/www.scientific.net/nh.1.57
Google Scholar
[10]
R.J. Tayade, P. K. Surolia, M. A. Lazar, R. V. Jasra, Enhanced photocatalytic activity by silver metal ion exchanged NaY zeolite photocatalysts for the degradation of organic contaminants and dyes in aqueous medium, Ind. Eng. Chem. Res.47(2008) 7545-7551.
DOI: 10.1021/ie800441c
Google Scholar
[11]
R.J. Tayade, H.C. Bajaj, R.V. Jasra, Photocatalytic removal of organic contaminants from water exploiting tuned band gap photocatalysts, Desalination, 275(2011)160-165.
DOI: 10.1016/j.desal.2011.02.047
Google Scholar
[12]
P.K. Surolia, R.J. Tayade, R.V. Jasra, Photocatalytic degradation of nitrobenzene in an aqueous system by transition-metal-exchanged ETS-10 Zeolites, Ind. Eng. Chem. Res.49 (2010)3961-3966.
DOI: 10.1021/ie901603k
Google Scholar
[13]
S. Singhal, S. Bhukal, J. Singh, K. Chandra, S. Bansal, Optical, X-ray diffraction and magnetic properties of the cobalt substituted nickel chromium ferrites (CrCoxNi1-xFeO4, x=0, 0.2 ,0.4, 0.6, 0.8, 1.0) synthesized using sol-gel auto combustion method, J. Nano Tech. 2011 (2011) 1-6.
DOI: 10.1155/2011/930243
Google Scholar
[14]
R. Dom, R. Subasri, K. Radha, P. H. Borse, Synthasis of solar active nano crystalline ferrite, MFe2O4 (M; Ca, Zn, Mg ) photo catalyst by microwave irradiation, Solid State Commun. 151 (2011) 470-479.
DOI: 10.1016/j.ssc.2010.12.034
Google Scholar
[15]
E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review, Sep. Puri. Tech., 87 (2012) 1-14.
DOI: 10.1016/j.seppur.2011.11.034
Google Scholar
[16]
P. Lahiri, S. K. Sengupta, Spinal ferrite as catalysts; A study on catalytic effect of co-precipitated ferrites on hydrogen peroxide decomposition, Can. J. Chem. 69 (1991) 33-36.
DOI: 10.1139/v91-006
Google Scholar
[17]
C. S. Hwang, N. C. Wang, Preparation and characteristics of ferrite catalysts for reduction for CO2, Mater. Chem. Phys. 88 (2004) 258-263.
Google Scholar
[18]
H. C. Shin, S. C. Choi, K. D. Jung, S. H. Han, Mechanism of M ferrites (M = Cu and Ni ) in the CO2 decomposition reaction, Chem. Mater. 13 (2001) 1238-1242.
DOI: 10.1021/cm000658b
Google Scholar
[19]
F. Papa, L. Patron, O. Carp, C. Paraschiv, B. Loan, Catalytic activity of neodymium substituted zinc ferrites for oxidative conversion of methane, J. Mol. Cata. A: Chem. 299 (2009) 93-97.
DOI: 10.1016/j.molcata.2008.10.036
Google Scholar
[20]
R. Klimkiewicz, J. Wolska, A. Przepiera, K. Przepiera, M. Jableriski, S. Lenart, The zinc ferrite obtained by the oxidative precipitation method as a catalyst in n-butanol conversion, Mater. Res. Bull. 44 (2009) 15-20.
DOI: 10.1016/j.materresbull.2008.08.004
Google Scholar
[21]
P. Guo, G. Zhang, J. Yu, H. Li, X. S. Zhao, Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nano crystal clusters of manganese ferrite, Coll. Sur. A: Physico. Engg. Asp. 395 (2012) 168-174.
DOI: 10.1016/j.colsurfa.2011.12.027
Google Scholar
[22]
K. N. Harish, H. S. B. Naik, P. N. P. Kumar, R. Viswanath, Synthesis, enhanced optical and photocatalytic study of Cd-Zn ferrites under sun light, Catal. Sci. Technol. 2 (2012) 1033-1039.
DOI: 10.1039/c2cy00503d
Google Scholar
[23]
N. M. Mahamoodi, Photo catalytic ozonation of dyes using copper ferrite nanoparticle proposed by co- precipitation method, Desalination 279 (2011) 332-337.
DOI: 10.1016/j.desal.2011.06.027
Google Scholar
[24]
D. S. Bhatkhande, V. G. Pangarkar, A. A. C. M. Beenackers, Photocatalytic degradation for environmental applications – a review, J. Chem. Technol. Biotech. 77 (2001) 102-116.
DOI: 10.1002/jctb.532
Google Scholar
[25]
S. Chaturvedi, P. N. Dave, N. K. Shah, Applications of nano-catalyst in newera, J. Saudi Chem. Soc. 16 (2012) 307-325.
Google Scholar
[26]
A. Z. Moshfegh, Nanoparticle catalysts, J. Phys. D: Appl. Phys. 42 (2009) 233001-233030.
Google Scholar
[27]
K. B. Modi, N. H. Vasoya, V. K. Lakhani, T. K. Pathak,Spherical to needleshaped particles transformation study on nanocrystalline Mg-Mn ferrites, J. Adv. Micro. Res. 7 (2012) 40-43.
DOI: 10.1166/jamr.2012.1097
Google Scholar
[28]
R. J. Tayade, R. G. Kulkarni, R. V. Jasra, Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.
DOI: 10.1021/ie051362o
Google Scholar
[29]
Alex Goldman, "Modern ferrite technology", 2nd addition Springer, USA.
Google Scholar
[30]
M.K. Rangolia, M.C. Chhantbar, A.R. Tanna, K.B. Modi, G.J. Baldha, H.H. Joshi, Magnetic behaviour of nano-sized and coarse powders of Cd-Ni ferrites synthesized by wet-chemical route, Ind. J. Pure Appl. Phys. 46 (2008) 60-64.
Google Scholar
[31]
T. K. Pathak, J. J. U. Buch, U. N. Trivedi, H. H. Joshi, K. B. Modi, Infrared spectroscopy and elastic properties of nanocrystalline Mg-Mn ferrites prepared by co-precipitation technique, J. Nano. Sci. Nano. Tech. 8 (2008) 4181-4185.
DOI: 10.1166/jnn.2008.an33
Google Scholar
[32]
Z. J. Zhang, Z. L. Wang, B. C. Chakaumakos, J. S. Yin, Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals,J. Am. Chem. Soc. 120 (1998) 1800-1804.
DOI: 10.1021/ja973085l
Google Scholar
[33]
B. D. Culity, Elements of X-ray diffraction, 2ndEdn. Addison Wesley Pub. Co. Reading, Mass, USA (1978) p.102.
Google Scholar
[34]
T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Structural and magnetic phase evolution study on needle shaped nanoparticles of magnesium ferrite, Ceram. Int. 36 (2010) 275-381.
DOI: 10.1016/j.ceramint.2009.07.023
Google Scholar
[35]
N. H. Vasoya, L. H. Vanpariya, P. N. Sakariya, M. D. Timbadiya, T. K. Pathak, V. K. Lakhani, K. B. Modi, Synthesis of nanostructured material by mechanical milling and study on structural property modifications in Ni0.5Zn0.5Fe2O4,Ceram. Int. 36 (2011) 947-954.
DOI: 10.1016/j.ceramint.2009.10.024
Google Scholar
[36]
G.P. Joshi, N. S. Saxena, R. Mangal, A. Mishra, T. P. Sharma, Band gap determination of Ni-Zn ferrites, Bull. Mater, Sci. 26 (2003) 387-389.
DOI: 10.1007/bf02711181
Google Scholar
[37]
J. Lx, L. Qiu, B. Qu, Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene-vinyl acetate blends, Nanotechnology, 15 (2004) 1576-1581.
DOI: 10.1088/0957-4484/15/11/035
Google Scholar
[38]
L.K. Bagal, Influence of metal oxide nanoclusters on Pt, Pd-doped SnO2 gas sensor, Ph.D. thesis, Solapur University, Solapur, India (2012) p.124.
Google Scholar