Photocatalytic Degradation of Aqueous Nitrobenzene Solution Using Nanocrystalline Mg-Mn Ferrites

Article Preview

Abstract:

MgxMn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.5, 0.6 0.8 and 1.0) spinel ferrite system was synthesized by the chemical co-precipitation route. Subsequent characterization of synthesized Mg-Mn ferrites was carried out by X-ray powder diffraction and transmission electron microscopy to study the structural and textural properties of photocatalysts. Porosity, surface area and equivalent surface free energy of different Mg-Mn ferrite photocatalysts were calculated. The photocatalytic activity of synthesized photocatalysts was evaluated by degradation of nitrobenzene in aqueous medium under ultraviolet light irradiation. The results demonstrated that the percentage degradation of nitrobenzene was decreased with increase in Mg concentration (x) from x = 0.0 0.5 and further increase in concentration from x = 0.6 1.0 results increase in percentage degradation of NB. This dissimilarity in the percentage degradation of NB may be due to the change in grain morphology, optical energy band gap, role played by d-electrons and porosity as a function of Mg-substitution for Mn2+ in the system. The percentage degradation was further confirmed by chemical oxygen demand (COD) analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-129

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. J. Tayade, R. G. Kulkarni, R. V. Jasra, Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2, Ind. Eng. Chem. Res. 45 (2006) 922-927.

DOI: 10.1021/ie051060m

Google Scholar

[2] B. E. Haigler, J. C. Spain, Biotransformation of nitrobenzene by bacteria containing toluene degradation pathways, Appl. Environ. Microbiol. 57 (1991) 3156-3162.

DOI: 10.1128/aem.57.11.3156-3162.1991

Google Scholar

[3] R. J. Tayade, D. L. Dey, Synthesis and characterization of titanium dioxide nanotube for photocatalytic degradation of aqueous nitrobenzene in the presence of sunlight, Mater. Sci. Forum 657 (2010) 62-74.

DOI: 10.4028/www.scientific.net/msf.657.62

Google Scholar

[4] R. J. Tayade, T.S. Natarajan, H. C. Bajaj, Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes, Ind. Eng. Chem. Res.48 (2009)10262-10267.

DOI: 10.1021/ie9012437

Google Scholar

[5] T. S.Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, R. J. Tayade, Study on UV- LED/TiO2 process for degradation of Rhodamine B dye, Chem. Eng. J. 169 (2011) 126-134.

DOI: 10.1016/j.cej.2011.02.066

Google Scholar

[6] T. S.Natarajan, K. Natarajan, H. C. Bajaj and R. J. Tayade, Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application, Ind. Eng. Chem. Res. 50 (2011) 7753-7762.

DOI: 10.1021/ie200493k

Google Scholar

[7] K. Natarajan, T. S.Natarajan, H. C. Bajaj, R. J. Tayade, Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes, Chem. Eng. J. 178 (2011) 40-49.

DOI: 10.1016/j.cej.2011.10.007

Google Scholar

[8] R. J. Tayade, P. K. Surolia, R. G. Kulkarni, R. V. Jasra, Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2, Sci. Tech. Adv. Mater. 8 (2007) 455-462.

DOI: 10.1016/j.stam.2007.05.006

Google Scholar

[9] M. A. Lazar, R. J. Tayade, H. C. Bajaj, R. V. Jasra, Correlation of surface properties and photocatalytic activity of nanocrystalline TiO2 on the synthesis route, Nano Hybrids 1 (2012) 57-80.

DOI: 10.4028/www.scientific.net/nh.1.57

Google Scholar

[10] R.J. Tayade, P. K. Surolia, M. A. Lazar, R. V. Jasra, Enhanced photocatalytic activity by silver metal ion exchanged NaY zeolite photocatalysts for the degradation of organic contaminants and dyes in aqueous medium, Ind. Eng. Chem. Res.47(2008) 7545-7551.

DOI: 10.1021/ie800441c

Google Scholar

[11] R.J. Tayade, H.C. Bajaj, R.V. Jasra, Photocatalytic removal of organic contaminants from water exploiting tuned band gap photocatalysts, Desalination, 275(2011)160-165.

DOI: 10.1016/j.desal.2011.02.047

Google Scholar

[12] P.K. Surolia, R.J. Tayade, R.V. Jasra, Photocatalytic degradation of nitrobenzene in an aqueous system by transition-metal-exchanged ETS-10 Zeolites, Ind. Eng. Chem. Res.49 (2010)3961-3966.

DOI: 10.1021/ie901603k

Google Scholar

[13] S. Singhal, S. Bhukal, J. Singh, K. Chandra, S. Bansal, Optical, X-ray diffraction and magnetic properties of the cobalt substituted nickel chromium ferrites (CrCoxNi1-xFeO4, x=0, 0.2 ,0.4, 0.6, 0.8, 1.0) synthesized using sol-gel auto combustion method, J. Nano Tech. 2011 (2011) 1-6.

DOI: 10.1155/2011/930243

Google Scholar

[14] R. Dom, R. Subasri, K. Radha, P. H. Borse, Synthasis of solar active nano crystalline ferrite, MFe2O4 (M; Ca, Zn, Mg ) photo catalyst by microwave irradiation, Solid State Commun. 151 (2011) 470-479.

DOI: 10.1016/j.ssc.2010.12.034

Google Scholar

[15] E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review, Sep. Puri. Tech., 87 (2012) 1-14.

DOI: 10.1016/j.seppur.2011.11.034

Google Scholar

[16] P. Lahiri, S. K. Sengupta, Spinal ferrite as catalysts; A study on catalytic effect of co-precipitated ferrites on hydrogen peroxide decomposition, Can. J. Chem. 69 (1991) 33-36.

DOI: 10.1139/v91-006

Google Scholar

[17] C. S. Hwang, N. C. Wang, Preparation and characteristics of ferrite catalysts for reduction for CO2, Mater. Chem. Phys. 88 (2004) 258-263.

Google Scholar

[18] H. C. Shin, S. C. Choi, K. D. Jung, S. H. Han, Mechanism of M ferrites (M = Cu and Ni ) in the CO2 decomposition reaction, Chem. Mater. 13 (2001) 1238-1242.

DOI: 10.1021/cm000658b

Google Scholar

[19] F. Papa, L. Patron, O. Carp, C. Paraschiv, B. Loan, Catalytic activity of neodymium substituted zinc ferrites for oxidative conversion of methane, J. Mol. Cata. A: Chem. 299 (2009) 93-97.

DOI: 10.1016/j.molcata.2008.10.036

Google Scholar

[20] R. Klimkiewicz, J. Wolska, A. Przepiera, K. Przepiera, M. Jableriski, S. Lenart, The zinc ferrite obtained by the oxidative precipitation method as a catalyst in n-butanol conversion, Mater. Res. Bull. 44 (2009) 15-20.

DOI: 10.1016/j.materresbull.2008.08.004

Google Scholar

[21] P. Guo, G. Zhang, J. Yu, H. Li, X. S. Zhao, Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nano crystal clusters of manganese ferrite, Coll. Sur. A: Physico. Engg. Asp. 395 (2012) 168-174.

DOI: 10.1016/j.colsurfa.2011.12.027

Google Scholar

[22] K. N. Harish, H. S. B. Naik, P. N. P. Kumar, R. Viswanath, Synthesis, enhanced optical and photocatalytic study of Cd-Zn ferrites under sun light, Catal. Sci. Technol. 2 (2012) 1033-1039.

DOI: 10.1039/c2cy00503d

Google Scholar

[23] N. M. Mahamoodi, Photo catalytic ozonation of dyes using copper ferrite nanoparticle proposed by co- precipitation method, Desalination 279 (2011) 332-337.

DOI: 10.1016/j.desal.2011.06.027

Google Scholar

[24] D. S. Bhatkhande, V. G. Pangarkar, A. A. C. M. Beenackers, Photocatalytic degradation for environmental applications – a review, J. Chem. Technol. Biotech. 77 (2001) 102-116.

DOI: 10.1002/jctb.532

Google Scholar

[25] S. Chaturvedi, P. N. Dave, N. K. Shah, Applications of nano-catalyst in newera, J. Saudi Chem. Soc. 16 (2012) 307-325.

Google Scholar

[26] A. Z. Moshfegh, Nanoparticle catalysts, J. Phys. D: Appl. Phys. 42 (2009) 233001-233030.

Google Scholar

[27] K. B. Modi, N. H. Vasoya, V. K. Lakhani, T. K. Pathak,Spherical to needleshaped particles transformation study on nanocrystalline Mg-Mn ferrites, J. Adv. Micro. Res. 7 (2012) 40-43.

DOI: 10.1166/jamr.2012.1097

Google Scholar

[28] R. J. Tayade, R. G. Kulkarni, R. V. Jasra, Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water, Ind. Eng. Chem. Res. 45 (2006) 5231-5238.

DOI: 10.1021/ie051362o

Google Scholar

[29] Alex Goldman, "Modern ferrite technology", 2nd addition Springer, USA.

Google Scholar

[30] M.K. Rangolia, M.C. Chhantbar, A.R. Tanna, K.B. Modi, G.J. Baldha, H.H. Joshi, Magnetic behaviour of nano-sized and coarse powders of Cd-Ni ferrites synthesized by wet-chemical route, Ind. J. Pure Appl. Phys. 46 (2008) 60-64.

Google Scholar

[31] T. K. Pathak, J. J. U. Buch, U. N. Trivedi, H. H. Joshi, K. B. Modi, Infrared spectroscopy and elastic properties of nanocrystalline Mg-Mn ferrites prepared by co-precipitation technique, J. Nano. Sci. Nano. Tech. 8 (2008) 4181-4185.

DOI: 10.1166/jnn.2008.an33

Google Scholar

[32] Z. J. Zhang, Z. L. Wang, B. C. Chakaumakos, J. S. Yin, Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals,J. Am. Chem. Soc. 120 (1998) 1800-1804.

DOI: 10.1021/ja973085l

Google Scholar

[33] B. D. Culity, Elements of X-ray diffraction, 2ndEdn. Addison Wesley Pub. Co. Reading, Mass, USA (1978) p.102.

Google Scholar

[34] T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Structural and magnetic phase evolution study on needle shaped nanoparticles of magnesium ferrite, Ceram. Int. 36 (2010) 275-381.

DOI: 10.1016/j.ceramint.2009.07.023

Google Scholar

[35] N. H. Vasoya, L. H. Vanpariya, P. N. Sakariya, M. D. Timbadiya, T. K. Pathak, V. K. Lakhani, K. B. Modi, Synthesis of nanostructured material by mechanical milling and study on structural property modifications in Ni0.5Zn0.5Fe2O4,Ceram. Int. 36 (2011) 947-954.

DOI: 10.1016/j.ceramint.2009.10.024

Google Scholar

[36] G.P. Joshi, N. S. Saxena, R. Mangal, A. Mishra, T. P. Sharma, Band gap determination of Ni-Zn ferrites, Bull. Mater, Sci. 26 (2003) 387-389.

DOI: 10.1007/bf02711181

Google Scholar

[37] J. Lx, L. Qiu, B. Qu, Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene-vinyl acetate blends, Nanotechnology, 15 (2004) 1576-1581.

DOI: 10.1088/0957-4484/15/11/035

Google Scholar

[38] L.K. Bagal, Influence of metal oxide nanoclusters on Pt, Pd-doped SnO2 gas sensor, Ph.D. thesis, Solapur University, Solapur, India (2012) p.124.

Google Scholar