Photocatalytic Hydrogen Production

Article Preview

Abstract:

Hydrogen is the efficient storage of solar energy in chemical fuels. It is essential for the large-scale utilization of solar energy systems. The production of clean and renewable hydrogen via photocatalysis has received much attention due to the increasing global energy need. In the chapter we are mainly discussed about photocatalytic method for hydrogen production. All other reported method and mechanism of hydrogen production are also summarized here.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-168

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] BD Alexander, PJ Kulesza, I Rutkowska, R Solarska, J. Augustynski, Metal oxide photoanodes for solar hydrogen production, Journal of Materials Chemistry, 18(20) (2008) 2298-303.

DOI: 10.1039/b718644d

Google Scholar

[2] SJ Davis, K Caldeira, HD. Matthews, Future CO2 emissions and climate change from existing energy infrastructure, Science; 329 (2010)1330-3.

DOI: 10.1126/science.1188566

Google Scholar

[3] Bai Hongwei, Liu Zhaoyang, Delai Sun Darren; The design of a hierarchical photocatalyst inspired by natural forest and its usage on hydrogen generation; international journal of hydrogen energy; 37 (2012) 13998-14008.

DOI: 10.1016/j.ijhydene.2012.07.041

Google Scholar

[4] S. Jae, Photo-catalytic water splitting under visible light with particulate semiconductors catalyst, Catal Surv Asia, 9 (2005) 217–28.

Google Scholar

[5] NA. John, The multiple role for catalysis in the production of H2, Appl Catal A Gen, 176 (1996) 159–76.

Google Scholar

[6] M Momirlan, T. Veziroglu, Recent direction of world hydrogen production, Renew Sust Energ Rev., 3 (1999) 219–31.

Google Scholar

[7] P Tseng, J Lee, P Eriley. A hydrogen economy: opportunities and challenges. Energy, 30 (2005) 2703–20.

Google Scholar

[8] L.S. Yoong, F.K. Chong, Binay K. Dutta, Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light, Energy, 34 (2009) 1652–1661.

DOI: 10.1016/j.energy.2009.07.024

Google Scholar

[9] SS. Penner, Steps towards hydrogen economy, Energy, 31 (2006) 33–43.

Google Scholar

[10] LJ Guo, L Zhao, DW Jing, YJ Lu, HH Yang , EF Bai, Solar hydrogen production and its development in China, Energy, (2009).

DOI: 10.1016/j.energy.2009.03.012

Google Scholar

[11] R Van De Krol, Y Liang, J Schoonman, Solar hydrogen production with nanostructured metal oxides, Journal of Materials Chemistry,18(20) (2008) 2311-20.

DOI: 10.1039/b718969a

Google Scholar

[12] M Ni, Michel KH Leung, K Sumathy, DYC Leung, Water electrolysis: a bridge between renewable resources and hydrogen, Proceedings of the International Hydrogen Energy forum, 1 (2004) Beijing, PRC. p.475–480.

Google Scholar

[13] Meng Ni, Michael K.H. Leung, Dennis Y.C. Leung, K. Sumathy A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production Renewable and Sustainable Energy Reviews 11 (2007) 401–425.

DOI: 10.1016/j.rser.2005.01.009

Google Scholar

[14] A Fujishima, K Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–8.

DOI: 10.1038/238037a0

Google Scholar

[15] R Asahi, T Morikawa, T Ohwaki, K Aoki, Y Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–71.

DOI: 10.1126/science.1061051

Google Scholar

[16] M. Gratzel, Photochemical cells, Nature, 414 (2001), 338-344.

Google Scholar

[17] O Khaselev, JA Turner, A monolithic photovoltaic-photo-electrochemical device for hydrogen production via water splitting, Science, 80(5362), (1998) 425–7.

DOI: 10.1126/science.280.5362.425

Google Scholar

[18] ZG Zou, JH Ye, K Sayama, H Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (2001) 625–7.

DOI: 10.1038/414625a

Google Scholar

[19] SUM Khan, Jr M Al-Shahry, WB Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297 (2002) 2243–5.

DOI: 10.1126/science.1075035

Google Scholar

[20] JM Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal Today, 53 (1) (1999) 115–29.

DOI: 10.1016/s0920-5861(99)00107-8

Google Scholar

[21] MA Fox, M. Dulay, Heterogeneous photocatalysis, Chem Rev, 93 (1993) 341–57.

Google Scholar

[22] MR Hoffmann, ST Martin, WY Choi, DW Bahnmann,. Environmental applications of semiconductor photocatalysis, Chem Rev, 95 (1995) 69–96.

Google Scholar

[23] A Mills, SL. Hunte, An overview of semiconductor photocatalysis, J Photochem Photobiol A: Chem, 108 (1997) 1–35.

Google Scholar

[24] C. Tanielian, Decatungstate photocatalysis, Coord Chem Rev,178–180 (1998)1165–81.

Google Scholar

[25] DA Tryk, A Fujishima, K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects, Electrochim Acta, 45 (2000) 2363–76.

DOI: 10.1016/s0013-4686(00)00337-6

Google Scholar

[26] AE Cassano, OM Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors, Catal Today, 58 (2–3) (2000) 167–97.

DOI: 10.1016/s0920-5861(00)00251-0

Google Scholar

[27] OM Alfano, D Bahnemann, AE Cassano, R Dillert, R Goslich, Photocatalysis in water environments using artificial and solar light, Catal Today, 58 (2000) 199–230.

DOI: 10.1016/s0920-5861(00)00252-2

Google Scholar

[28] A Fujishima, TN Rao, DA Tryk. Titanium dioxide photocatalysis,. J Photochem Photobiol C: Photochem Rev, 1 (2000) 1–21.

Google Scholar

[29] S Malato, J Blanco, A Vidal, C Richter, Photocatalysis with solar energy at a pilot-plant scale: an overview, Appl Catal B: Environ, 37 (2002) 1–15.

DOI: 10.1016/s0926-3373(01)00315-0

Google Scholar

[30] K Pirkanniemi, M. Sillanpaa, Heterogeneous water phase catalysis as an environmental application: a review, Chemosphere, 48 (2002) 1047–60.

DOI: 10.1016/s0045-6535(02)00168-6

Google Scholar

[31] LQ Jing, XJ Sun, J Shang, WM Cai, ZL Xu, YG Du, et al. Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis, Sol Energy Mater Sol Cells,79 (2003) 133–51.

Google Scholar

[32] J Zhao, XD Yang, Photocatalytic oxidation for indoor air purification: a literature review, Building Environ, 38(5) (2003) 645–54.

DOI: 10.1016/s0360-1323(02)00212-3

Google Scholar

[33] IK Konstantinou, TA Albanis. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations—a review, Appl Catal B: Environ, 49 (2004)1–14.

DOI: 10.1016/j.apcatb.2003.11.010

Google Scholar

[34] D Bahnemann,. Photocatalytic water treatment: solar energy applications, Sol Energy, 77(5) (2004) 445–59.

DOI: 10.1016/j.solener.2004.03.031

Google Scholar

[35] M. Ashokkumar, An overview on semiconductor particulate systems for photoproduction of hydrogen, Int J Hydrogen Energy, 23(6) (1998) 427–38.

DOI: 10.1016/s0360-3199(97)00103-1

Google Scholar

[36] Rostrup-Nielsen, "Syngas in perspective", Catalysis Today, 71 (2002), pp.243-247.

DOI: 10.1016/s0920-5861(01)00454-0

Google Scholar

[37] Florian Nagel Electricity from wood through the combination of gasification and solid oxide fuel cells, Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, (2008).

Google Scholar

[38] C. J. Winter; Hydrogen energy Abundant, efficient, clean: A debate over the energy-system-of-change, international journal of hydrogen energy, 34 (2009) 1–52.

DOI: 10.1016/j.ijhydene.2009.05.063

Google Scholar

[39] L Bromberg, DR Cohn, A Rabinovich, JE Surma, J. Virden, Compact plasmatron-boosted hydrogen generation technology for vehicular applications, Int J Hydrogen Energy, 24 (1994) 341–50.

DOI: 10.1016/s0360-3199(98)00013-5

Google Scholar

[40] SL Yao, T Takemoto, F Ouyang, A Nakayama, E Suzuki, A.Mizuno, et al. Selective oxidation of methane using a nonthermal pulsed plasma, Energy and Fuels, 14 (2000) 459–63.

DOI: 10.1021/ef9901692

Google Scholar

[41] JM ormier, I. Rusu, Syngas production via a methane steam reforming with oxygen: plasma reactors versus chemical reactors, J Phys D: Appl Phys., 34 (2001) 2798–803.

DOI: 10.1088/0022-3727/34/18/313

Google Scholar

[42] G Prieto, M Okumoto, K Shimano, K Takashima, S Katsura, A. Mizuno, Reforming of heavy oil using nonthermal plasma, IEEE Trans Plasma Sci., 37 (2001) 1464–7.

DOI: 10.1109/28.952522

Google Scholar

[43] DW Larkin, L Zhou, LL Lobban, RG Mallinson, Product selectivity control and organic oxygenate pathways from partial oxidation of methane in a silent electric discharge reactor, Indian Eng Chem Res, 40 (2001) 5496–506.

DOI: 10.1021/ie010298h

Google Scholar

[44] A. Czernichowski, GlidArc assisted preparation of the synthesis gas from natural and waste hydrocarbon gases, Oil Gas Sci Technol, 56 (2001) 181–98.

DOI: 10.2516/ogst:2001018

Google Scholar

[45] L Bromberg, DR Cohn, A Rabinovich, J Heywood, Emissions reductions using hydrogen from plasmatron fuel converters, Int J Hydrogen Energy, 26 (2001) 1115–21.

DOI: 10.1016/s0360-3199(01)00049-0

Google Scholar

[46] MG Sobacchi, AV Saveliev, AA Fridman, LA Kennedy, S Ahmed, T. Krause, Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels, Int J Hydrogen Energy, 27 (2002) 635–42.

DOI: 10.1016/s0360-3199(01)00179-3

Google Scholar

[47] H Sekiguchi, M. Mori, Steam plasma reforming using microwave discharges, Thin Solid Films,435 (2003) 44–8.

DOI: 10.1016/s0040-6090(03)00379-1

Google Scholar

[48] "Hydrogen" Bellona Report 6: (2002)

Google Scholar

[49] EM Van Veldhuizen, editor. Electrical discharges for environmental purposes: fundamentals and applications. New York: Nova Science, (2000).

Google Scholar

[50] M.S. Benilov, G.V. Naidis, Modeling of hydrogen-rich gas production by plasma reforming of hydrocarbon fuels, International Journal of Hydrogen Energy, 31 (2006) 769 – 774.

DOI: 10.1016/j.ijhydene.2005.06.018

Google Scholar

[51] S Williams, AJ Midey, ST Arnold, PM Bench, AA Viggiano, RA Morris, et al., Progress on the investigation of the effects of ionization on hydrocarbon/air combustion chemistry, AIAA Paper 99-4907 (1999).

DOI: 10.2514/6.1999-4907

Google Scholar

[52] M Deminsky, V Jivotov, B Potapkin, V Rusanov, Plasma assisted production of hydrogen from hydrocarbons, Pure Appl Chem,74 (2002) 413–8.

DOI: 10.1351/pac200274030413

Google Scholar

[53] "Hydrogen production from coal" Fact sheet; Fuel cell and hydrogen energy association, www.fchea.org.

Google Scholar

[54] Peter Häussinger; Reiner Lohmüller; Allan M. Watson, "Hydrogen", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH (2005).

Google Scholar

[55] SPS Badwal, S Giddey, C Munnings, WIRES; Energy and Environment.doi:10.1002/wene.50. http://wires.wiley.com/WileyCDA/WiresArticle/wisId-WENE50.html., (2012).

DOI: 10.1002/wene.50

Google Scholar

[56] A. Hauch, S. D.Ebbesen, S.H. Jensen, M. Mogensen, Highly Efficient High Temperature Electrolysis, J Mater Chem, 18 (2008) 2331-2340.

DOI: 10.1039/b718822f

Google Scholar

[57] Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy', www.phys.org.com, 2012-03-26 (2012).

Google Scholar

[58] R Clarke, S Giddey, FT Ciacchi, SPS Badwal, B Paul and J Andrews, Direct coupling of an electrolyser to a solar PV system for generating hydrogen, International Journal of Hydrogen Energy, 34 (6) (2009) 2531–2542.

DOI: 10.1016/j.ijhydene.2009.01.053

Google Scholar

[59] RH Crabtree, Energu production and storage: Inorganic chemical strategies for warming world, John and wiley & sons's (2012).

Google Scholar

[60] R. W. Coughlin and M. Farooque, Hydrogen production from coal,water and electrons, Nature,. 279 (1979) 301-303.

DOI: 10.1038/279301a0

Google Scholar

[61] M. Farooque and R. W. Coughlin, Electrochemical gasification of coal (investigation of operating conditions and variables), Fuel, 58 (1979) 705-712.

DOI: 10.1016/0016-2361(79)90066-8

Google Scholar

[62] R. W. Coughlin and M. Farooque, Electrochemical gasification of coal, Ind. Eng. Chem. Prod. R&D 19 (1980) 211-219.

Google Scholar

[63] R. W. Coughlin and M. Farooque, Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic oxidation, J. appl. Electrochem, 10 (1980) 729-740.

DOI: 10.1007/bf00611276

Google Scholar

[64] P. W. T. Lu, Technological Aspects of Sulfur Dioxide Depolarized Electrolysis for Hydrogen. Production, Int. J. Hydrogen Energy, 8 (10) (1983)773-81.

DOI: 10.1016/0360-3199(83)90207-0

Google Scholar

[65] R. L. Clarke, P. C. Foiler and R. J. Vaughan, Extended Abstracts of the Electrochemical Society Meeting, San Francisco, May; (1983) Abs. No. 587.

Google Scholar

[66] J. O'M. Bockris, B. Dandapani, D. Cocke and J. Ghoroghchian, On The Splitting of water, Int. J. Hydrogen Energy, 10.(30) (1985) 179-201,.

DOI: 10.1016/0360-3199(85)90025-4

Google Scholar

[67] EA Fletcher, RL Moen. Hydrogen and oxygen from water, Science, 197 (1977) 1050 – 6.

Google Scholar

[68] A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. II. Experimental feasibility study, Int J Hydrogen Energy, 23 (1998) 89–98.

DOI: 10.1016/s0360-3199(97)00038-4

Google Scholar

[69] S. Ihara, On the study of hydrogen production from water using solar thermal energy, Int J Hydrogen Energy, 5 (1980) 527–34.

DOI: 10.1016/0360-3199(80)90059-2

Google Scholar

[70] EA. Fletcher, Solar thermal and solar quasi-electrolytic processing and separations: Zinc fromZinc Oxide as an example, Ind Eng Chem Res, 38 (1999) 2275–82.

DOI: 10.1021/ie990053t

Google Scholar

[71] J. Funk, Thermochemical hydrogen production: past and present,. Int J Hydrogen Energy, 26 (2001) 185–90.

DOI: 10.1016/s0360-3199(00)00062-8

Google Scholar

[72] N Serpone, D Lawless, R. Terzian, Solar Fuels: Status and Perspectives, Solar Energy, 49 (1992) 221–34.

DOI: 10.1016/0038-092x(92)90001-q

Google Scholar

[73] A Steinfeld, P Kuhn, A Reller, R Palumbo, J Murray, Y. Tamaura, Solar-processed metals as clean energy carriers and water-splitters, Int J Hydrogen Energy, 23 (1998) 767–74.

DOI: 10.1016/s0360-3199(97)00135-3

Google Scholar

[74] E Bilgen, M Ducarroir, M Foex, F Sibieude, Trombe F. Use of solar energy for direct and two-step water decomposition cycles, Int J Hydrogen Energy, 2 (1977) 251–7.

DOI: 10.1016/0360-3199(77)90021-0

Google Scholar

[75] T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures, Solar Energy, 19 (1977) 467–75.

DOI: 10.1016/0038-092x(77)90102-5

Google Scholar

[76] R Palumbo, J Lede, O Boutin, E Elorza-Ricart, A Steinfeld, S Moeller, A Weidenka, EA Fletcher, J. Bielicki, The production of Zn from ZnO in a single-step high temperature solar decomposition process, Chem Eng Sci., 53 (1998) 2503–18.

DOI: 10.1016/s0009-2509(98)00063-3

Google Scholar

[77] F Sibieude, M Ducarroir, A To-ghi, J. Ambriz, High-temperature experiments with a solar furnace: the decomposition of Fe3O4, Mn3O4, CdO, Int J Hydrogen Energy, 7 (1982) 79–88.

DOI: 10.1016/0360-3199(82)90209-9

Google Scholar

[78] A Steinfeld, S Sanders, R. Palumbo, Design aspects of solar thermochemical engineering, Solar Energy, 65 (1999) 43–53.

DOI: 10.1016/s0038-092x(98)00092-9

Google Scholar

[79] K Ehrensberger, A Frei, P Kuhn, HR Oswald, P Hug, Comparative experimental investigations on the water splitting reaction with iron oxide Fe1−yO and iron manganese oxides (Fe1−xMnx)1−yO, Solid State Ion, 78 (1995) 151–60.

DOI: 10.1016/0167-2738(95)00019-3

Google Scholar

[80] Y Tamaura, A Steinfeld, P Kuhn, K Ehrensberger, Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle, Energy, 20 (1995) 325–30.

DOI: 10.1016/0360-5442(94)00099-o

Google Scholar

[81] A. Steinfeld, Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions, International Journal of Hydrogen Energy, 27 (2002) 611 – 619.

DOI: 10.1016/s0360-3199(01)00177-x

Google Scholar

[82] Anja Hemschemeier, Anastasios Melis, and Thomas Happe, Analytical approaches to photobiological hydrogen production in unicellular green algae, Photosynth Res.,  102(2-3) (2009) 523–540.

DOI: 10.1007/s11120-009-9415-5

Google Scholar

[83] "Photobiological production of hydrogen" Hydrogen technologies Report of Nation renewable energy laboratory (2010).

Google Scholar

[84] C. Prince Roger, and S. Kheshgi Haroon, The photobiological production of hydrogen: Potential efficiency and effectiveness as renewable fuel, Critical reviews in microbiology; 31 (2005)19-31.

DOI: 10.1080/10408410590912961

Google Scholar

[85] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253-278.

DOI: 10.1039/b800489g

Google Scholar

[86] RM Navarro Yerga, M. Consuelo Álvarez Galván, F. del Valle, José A Villoria De La Mano, José L. G. Fierro, "Water Splitting on Semiconductor catalysts under Visible-Light Irradiation", Chemsuschem,  2 (6) ( 2009) 471–485.

DOI: 10.1002/cssc.200900018

Google Scholar

[87] F. del Valle, J.A. Villoria De La Mano, M.C. Álvarez-Galván, J.L.G. Fierro, "Photocatalytic water splitting under visible Light: concept and materials requirements", Advances in Chemical Engineering, 36 (2009) 111–143.

DOI: 10.1016/s0065-2377(09)00404-9

Google Scholar

[88] Weifeng Yao, Cunping Huang, Nazim Muradov, Ali T-Raissi; A novel PdeCr2O3/CdS photocatalyst for solar hydrogen production using a regenerable sacrificial donor; international journal of hydrogen energy, 36 (2011) 4710-4715.

DOI: 10.1016/j.ijhydene.2010.12.124

Google Scholar

[89] Shiping Xu, Jiawei Ng, Alan Jianhong Du, Jincheng Liu, Darren Delai Sun; Highly efficient TiO2 nanotube photocatalyst for simultaneous hydrogen production and copper removal from water, international journal of hydrogen energy, 36 (2011) 6538-6545.

DOI: 10.1016/j.ijhydene.2011.03.047

Google Scholar

[90] Shiping Xu, Jiawei Ng, Xiwang Zhang, Hongwei Bai, Darren Delai Sun; Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water', international journal of hydrogen energy, 36 (2010) 5254-5261.

DOI: 10.1016/j.ijhydene.2010.02.129

Google Scholar

[91] Shiping Xu, Alan Jianhong Du, Jincheng Liu, Jiawei Ng, Darren Delai Sun; Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water, international journal of hydrogen energy, 36 (2011) 6560-6568.

DOI: 10.1016/j.ijhydene.2011.02.103

Google Scholar

[92] Shaohua Shen, Liang Zhao, Liejin Guo; Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production, international journal of hydrogen energy, 33 (2008) 4501 – 4510.

DOI: 10.1016/j.ijhydene.2008.05.043

Google Scholar

[93] Shaohua Shen, Liang Zhao, Liejin Guo; ZnmIn2S3+m (m=1-5, integer): A new series of visiblelight- driven photocatalysts for splitting water to hydrogen, international journal of hydrogen energy, 35 (2010) 10148-10154.

DOI: 10.1016/j.ijhydene.2010.07.171

Google Scholar

[94] Amaresh C. Pradhan, Satyabadi Martha, S.K. Mahanta, K.M. Parida; Mesoporous nanocomposite Fe/Al2O3-CM-41: An efficient photocatalyst for hydrogen production under visible light, international journal of hydrogen energy, 36 (2011) 12753 - 2760.

DOI: 10.1016/j.ijhydene.2011.07.002

Google Scholar

[95] Surakerk Onsuratoom, Sumaeth Chavadej, Thammanoon Sreethawong; Hydrogen production from water splitting under UV light irradiation over Ag-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts, international journal of hydrogen energy, 36 (2011) 5246-5261.

DOI: 10.1016/j.ijhydene.2011.01.176

Google Scholar

[96] Zhigang Moua, Yupei Dong, Shujin Li, Yukou Du, Xiaomei Wang, Ping Yang, Suidong Wangb; Eosin Y functionalized graphene for photocatalytic hydrogen production from water, international journal of hydrogen energy, 36 (2011) 8885-8893.

DOI: 10.1016/j.ijhydene.2011.05.003

Google Scholar

[97] Yuexiang Li, Jianxia Wang, Shaoqin Peng, Gongxuan Lu, Shuben Li; Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation, international journal of hydrogen energy, 35 (2010) 7116 –7126.

DOI: 10.1016/j.ijhydene.2010.02.017

Google Scholar

[98] Jian-Ying Hao, Ying-Yong Wang, Xi-Li Tong, Guo-Qiang Jin, Xiang-Yun Guo; Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation; international journal of hydrogen energy, 37 (2012) 15038-15044.

DOI: 10.1016/j.ijhydene.2012.08.021

Google Scholar

[99] Nidhi Dubey, Nitin K. Labhsetwar, Sukumar Devotta, Sadhana S. Rayalu; Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst; Catalysis Today 129 (2007) 428–434.

DOI: 10.1016/j.cattod.2006.09.041

Google Scholar