Photocatalytic Activities of CdO-Fe2O3, CdO-CuFe2O4 and CdO-ZnFe2O4 Nanocomposites

Article Preview

Abstract:

Magnetically separable CdO-Fe2O3, CdO-CuFe2O4 and CdO-ZnFe2O4 nanocomposites have been prepared by precipitation method. The X-ray diffractogram shows face centered cubic CdO, cubic CdO2, rhombohedral α-Fe2O3, orthorhombic β-Fe2O3, cubic γ-Fe2O3 and tetragonal FeOOH as the constituents of CdO-Fe2O3 composite. The components of CdO-CuFe2O4 composite are face centered cubic CdO, body centered tetragonal CuFe2O4 and cubic γ-Fe2O3. Face centered cubic CdO and ZnFe2O4, cubic γ-Fe2O3 and rhombohedral α-Fe2O3 are the constituents of CdO-ZnFe2O4 composite. The energy dispersive X-ray spectra confirm the presence of the corresponding elements and provide the composition. The scanning electron micrographs show that the composite particles are of spherical shape and of nanodimension. The composites absorb visible light. The charge transfer resistances of the composites are larger than their constituents. CdO-Fe2O3 and CdO-CuFe2O4 composites display ferromagnetic behavior. The visible light-photocatalytic activities and bactericidal activities of the composites are larger than their precursors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

206-218

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.E. de A. Reyes, G.T. Delgado, R.C. Perez, J.M. Marin, O.Z. Angel, Optimization of the photocatalytic activity of CdO + CdTiO3 coupled oxide thin films obtained by sol-gel technique, J. Photochem. Photobiol. A 228 (2012) 22-27.

DOI: 10.1016/j.jphotochem.2011.11.007

Google Scholar

[2] C. Karunakaran, R. Dhanalakshmi, Semiconductor-catalyzed degradation of phenol with sunlight, Solar Energy Mater. Solar Cells 92 (2008) 1315-1321.

DOI: 10.1016/j.solmat.2008.05.002

Google Scholar

[3] C. Karunakaran, R. Dhanalakshmi, Selectivity in photocatalysis by particulate semiconductors, Cent. Eur. J. Chem. 7 (2009) 134-137.

DOI: 10.2478/s11532-008-0083-7

Google Scholar

[4] C. Karunakaran, R. Dhanalakshmi, P. Gomathisankar, G. Manikandan, Enhanced phenol-photodegradation by particulate semiconductor mixtures: Interparticle electron-jump, J. Hazard. Mater. 176 (2010) 799-806.

DOI: 10.1016/j.jhazmat.2009.11.105

Google Scholar

[5] C. Karunakaran, S. Narayanan, P. Gomathisankar, Photocatalytic degradation of 1-naphthol by oxide ceramics with added bacterial disinfection, J. Hazard. Mater. 181 (2010) 708-715.

DOI: 10.1016/j.jhazmat.2010.05.070

Google Scholar

[6] J. Li, Y. Ni, J. Liu, J. Hong, Preparation, conversion, and comparison of the photocatalytic property of Cd(OH)2, CdO, CdS and CdSe, J. Phys. Chem. Solid. 70 (2009) 1285-1289.

DOI: 10.1016/j.jpcs.2009.07.014

Google Scholar

[7] C. Karunakaran, P. Anilkumar, Semiconductor-catalyzed solar photooxidation of iodide ion, J. Mol. Catal. A 265 (2007) 153-158.

DOI: 10.1016/j.molcata.2006.10.016

Google Scholar

[8] X. Liu, Z. Xu, Y. Liu, Y. Shen, Novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials, Sens. Actuators B 52 (1998) 270-273.

DOI: 10.1016/s0925-4005(98)00278-0

Google Scholar

[9] X. Chu, S. Liang, T. Chen, Q. Zhang, Trimethylamine sensing properties of CdO-Fe2O3 nano-materials prepared using co-precipitation method in the presence of PEG 400, Mater. Chem. Phys. 123 (2010) 396-400.

DOI: 10.1016/j.matchemphys.2010.04.028

Google Scholar

[10] E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review, Sep. Purif. Technol. 87 (2012) 1-14.

DOI: 10.1016/j.seppur.2011.11.034

Google Scholar

[11] M.A. Valenzuela, P. Bosch, J. Jimenez-Becerrill, O. Quiroz, A.I. Paez, Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4, J. Photochem. Photobiol. A 148 (2002) 177-182.

DOI: 10.1016/s1010-6030(02)00040-0

Google Scholar

[12] N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, Photocatalytic reduction of Cr(VI) on the novel heterosystem CuFe2O4/CdS, J. Hazard. Mater. 185 (2011) 1398-1404.

DOI: 10.1016/j.jhazmat.2010.10.061

Google Scholar

[13] C. Xiangfeng, L. Xingqin, M. Guangyao, Effects of CdO dopant on the gas sensitivity properties of ZnFe2O4 semiconductors, Sens. Actuators B 65 (2000) 64-67.

DOI: 10.1016/s0925-4005(99)00430-x

Google Scholar

[14] C. Karunakaran, A. Vijayabalan, G. Manikandan, P. Gomathisankar, Visible light photocatalytic disinfection of bacteria by Cd-TiO2, Catal. Commun. 12 (2011) 826-829.

DOI: 10.1016/j.catcom.2011.01.017

Google Scholar

[15] M.M. Deraz, M.M. Hessien, Structural and magnetic properties of pure and doped nanocrystalline cadmium ferrite, J. Alloys Compd. 475 (2009) 832-839.

DOI: 10.1016/j.jallcom.2008.08.034

Google Scholar

[16] A.M. Ghozza, H.G. El-Shobaky, Effect of Li2O-doping of CdO-Fe2O3 system on the formation of nanocrystalline CdFe2O4, Mater. Sci. Engg. B 127 (2006) 233-238.

DOI: 10.1016/j.mseb.2005.10.027

Google Scholar

[17] A.A Mostafa, G.A. El-Shobaky, E. Girgis, Effects of ZnO-doping on structural and magnetic properties of CdFe2O4, J. Phys. D 39 (2006) 2007-2014.

Google Scholar

[18] S. Bid, S.K. Pradhan, Microstructure characterization and phase transformation kinetic study of machanosynthesized non-stoichiometric CdFe2O4 by Rietveld's analysis, Jpn. J. Appl. Phys. Part 1 43 (2004) 5455-5464.

DOI: 10.1143/jjap.43.5455

Google Scholar

[19] B. Gillot, D. Thiebaut, M. Laarj, Synthesis of stoichiometric cadmium substituted magnetites and formation by oxidation of solid solutions of cadmium ferrite and γ–iron oxide, Thermochim. Acta 342 (1999) 167-174.

DOI: 10.1016/s0040-6031(99)00310-x

Google Scholar

[20] W. Dong, C. Zhu, Optical properties of surface modified CdO nanoparticles, Opt. Mater. 22 (2003) 227-233.

DOI: 10.1016/s0925-3467(02)00269-0

Google Scholar

[21] A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamental and applications, second ed., Wiley, New York, 2000.

Google Scholar

[22] R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff Jr., A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique, Mater. Sci. Engg. B 111 (2004) 164-174.

DOI: 10.1016/j.mseb.2004.04.014

Google Scholar

[23] Z. Huang, G. Yin, X. Liao, Y. Yao, Y. Kang, Preparation and magnetic properties of Cu-ferrite nanorods and nanowires, J. Colloid Interface Sci. 317 (2008) 530-535.

DOI: 10.1016/j.jcis.2007.09.095

Google Scholar

[24] Y.-C. Liu, Y.-P. Fu, Magnetic and catalytic properties of copper ferrite nanopowders prepared by a microwave-induced combustion process, Ceram. Int. 36 (2010) 1597-1601.

DOI: 10.1016/j.ceramint.2010.02.032

Google Scholar

[25] G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Magnetic irreversibility and relaxation in CuFe2O4 nanoparticles, J. Magn. Magn. Mater. 218 (2000) 221-228.

DOI: 10.1016/s0304-8853(00)00339-5

Google Scholar

[26] P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution, Cur. Appl. Phys. 11 (2011) 101-108.

DOI: 10.1016/j.cap.2010.06.027

Google Scholar

[27] M. Sultan, R. Singh, Magnetization and crystal structure of RF-sputtered nanocrystalline CuFe2O4 thin films, Mater. Lett. 63 (2009) 1764-1766.

DOI: 10.1016/j.matlet.2009.05.027

Google Scholar

[28] W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers, Solid State Sci. 11 (2009) 479-484.

DOI: 10.1016/j.solidstatesciences.2008.06.019

Google Scholar

[29] N.M. Deraz, A. Alarifi, Synthesis and characterization of pure and Li2O doped ZnFe2O4 nanoparticles via glycine assisted route, Polyhedron 28 (2009) 4122-4130.

DOI: 10.1016/j.poly.2009.09.028

Google Scholar

[30] Z. Wang, H. Bi, J. Liu, T. Sun, X. Wu, Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite, J. Magn. Magn. Mater. 320 (2008) 2132-2139.

DOI: 10.1016/j.jmmm.2008.03.043

Google Scholar

[31] Y. Sun, G. Guo, B. Yang, W. Cai, Y. Tian, M. He, Y. Liu, One step solution synthesis of Fe2O3 nanoparticles at low temperature, Physica B 406 (2010) 1013-1016.

DOI: 10.1016/j.physb.2010.12.050

Google Scholar

[32] D. Peng, S. Beysen, Q. Li, Y. Sun, L. Yang, Hydrothermal synthesis of monodispersed α-Fe2O3 hexagonal platelets, Particuology 8 (2010) 386-389.

DOI: 10.1016/j.partic.2010.05.003

Google Scholar

[33] B. Hong, C. Qianwang, S. Tao, Preparation of ferromagnetic γ-Fe2O3 nanocrystallites by oxidative co-decomposition of PEG 6000 and ferrocene, Solid State Commun. 141 (2007) 573-576.

DOI: 10.1016/j.ssc.2006.12.011

Google Scholar

[34] L. Sun, M. Cao, C. Hu, Synthesis and magnetic properties of hollow α-Fe2O3 nanospheres template by carbon nanospheres, Solid State Sci. 12 (2010) 2020-2023.

DOI: 10.1016/j.solidstatesciences.2010.08.020

Google Scholar

[35] C.D. Lokhande, S.S. Kulkarni, R.S. Mane, S.-H. Han, Room temperature single-step electrosynthesized copper ferrite thin films and study of their magnetic properties, J. Magn. Magn. Mater. 313 (2007) 69-75.

DOI: 10.1016/j.jmmm.2006.12.005

Google Scholar