[1]
M.E. de A. Reyes, G.T. Delgado, R.C. Perez, J.M. Marin, O.Z. Angel, Optimization of the photocatalytic activity of CdO + CdTiO3 coupled oxide thin films obtained by sol-gel technique, J. Photochem. Photobiol. A 228 (2012) 22-27.
DOI: 10.1016/j.jphotochem.2011.11.007
Google Scholar
[2]
C. Karunakaran, R. Dhanalakshmi, Semiconductor-catalyzed degradation of phenol with sunlight, Solar Energy Mater. Solar Cells 92 (2008) 1315-1321.
DOI: 10.1016/j.solmat.2008.05.002
Google Scholar
[3]
C. Karunakaran, R. Dhanalakshmi, Selectivity in photocatalysis by particulate semiconductors, Cent. Eur. J. Chem. 7 (2009) 134-137.
DOI: 10.2478/s11532-008-0083-7
Google Scholar
[4]
C. Karunakaran, R. Dhanalakshmi, P. Gomathisankar, G. Manikandan, Enhanced phenol-photodegradation by particulate semiconductor mixtures: Interparticle electron-jump, J. Hazard. Mater. 176 (2010) 799-806.
DOI: 10.1016/j.jhazmat.2009.11.105
Google Scholar
[5]
C. Karunakaran, S. Narayanan, P. Gomathisankar, Photocatalytic degradation of 1-naphthol by oxide ceramics with added bacterial disinfection, J. Hazard. Mater. 181 (2010) 708-715.
DOI: 10.1016/j.jhazmat.2010.05.070
Google Scholar
[6]
J. Li, Y. Ni, J. Liu, J. Hong, Preparation, conversion, and comparison of the photocatalytic property of Cd(OH)2, CdO, CdS and CdSe, J. Phys. Chem. Solid. 70 (2009) 1285-1289.
DOI: 10.1016/j.jpcs.2009.07.014
Google Scholar
[7]
C. Karunakaran, P. Anilkumar, Semiconductor-catalyzed solar photooxidation of iodide ion, J. Mol. Catal. A 265 (2007) 153-158.
DOI: 10.1016/j.molcata.2006.10.016
Google Scholar
[8]
X. Liu, Z. Xu, Y. Liu, Y. Shen, Novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials, Sens. Actuators B 52 (1998) 270-273.
DOI: 10.1016/s0925-4005(98)00278-0
Google Scholar
[9]
X. Chu, S. Liang, T. Chen, Q. Zhang, Trimethylamine sensing properties of CdO-Fe2O3 nano-materials prepared using co-precipitation method in the presence of PEG 400, Mater. Chem. Phys. 123 (2010) 396-400.
DOI: 10.1016/j.matchemphys.2010.04.028
Google Scholar
[10]
E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review, Sep. Purif. Technol. 87 (2012) 1-14.
DOI: 10.1016/j.seppur.2011.11.034
Google Scholar
[11]
M.A. Valenzuela, P. Bosch, J. Jimenez-Becerrill, O. Quiroz, A.I. Paez, Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4, J. Photochem. Photobiol. A 148 (2002) 177-182.
DOI: 10.1016/s1010-6030(02)00040-0
Google Scholar
[12]
N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, Photocatalytic reduction of Cr(VI) on the novel heterosystem CuFe2O4/CdS, J. Hazard. Mater. 185 (2011) 1398-1404.
DOI: 10.1016/j.jhazmat.2010.10.061
Google Scholar
[13]
C. Xiangfeng, L. Xingqin, M. Guangyao, Effects of CdO dopant on the gas sensitivity properties of ZnFe2O4 semiconductors, Sens. Actuators B 65 (2000) 64-67.
DOI: 10.1016/s0925-4005(99)00430-x
Google Scholar
[14]
C. Karunakaran, A. Vijayabalan, G. Manikandan, P. Gomathisankar, Visible light photocatalytic disinfection of bacteria by Cd-TiO2, Catal. Commun. 12 (2011) 826-829.
DOI: 10.1016/j.catcom.2011.01.017
Google Scholar
[15]
M.M. Deraz, M.M. Hessien, Structural and magnetic properties of pure and doped nanocrystalline cadmium ferrite, J. Alloys Compd. 475 (2009) 832-839.
DOI: 10.1016/j.jallcom.2008.08.034
Google Scholar
[16]
A.M. Ghozza, H.G. El-Shobaky, Effect of Li2O-doping of CdO-Fe2O3 system on the formation of nanocrystalline CdFe2O4, Mater. Sci. Engg. B 127 (2006) 233-238.
DOI: 10.1016/j.mseb.2005.10.027
Google Scholar
[17]
A.A Mostafa, G.A. El-Shobaky, E. Girgis, Effects of ZnO-doping on structural and magnetic properties of CdFe2O4, J. Phys. D 39 (2006) 2007-2014.
Google Scholar
[18]
S. Bid, S.K. Pradhan, Microstructure characterization and phase transformation kinetic study of machanosynthesized non-stoichiometric CdFe2O4 by Rietveld's analysis, Jpn. J. Appl. Phys. Part 1 43 (2004) 5455-5464.
DOI: 10.1143/jjap.43.5455
Google Scholar
[19]
B. Gillot, D. Thiebaut, M. Laarj, Synthesis of stoichiometric cadmium substituted magnetites and formation by oxidation of solid solutions of cadmium ferrite and γ–iron oxide, Thermochim. Acta 342 (1999) 167-174.
DOI: 10.1016/s0040-6031(99)00310-x
Google Scholar
[20]
W. Dong, C. Zhu, Optical properties of surface modified CdO nanoparticles, Opt. Mater. 22 (2003) 227-233.
DOI: 10.1016/s0925-3467(02)00269-0
Google Scholar
[21]
A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamental and applications, second ed., Wiley, New York, 2000.
Google Scholar
[22]
R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff Jr., A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique, Mater. Sci. Engg. B 111 (2004) 164-174.
DOI: 10.1016/j.mseb.2004.04.014
Google Scholar
[23]
Z. Huang, G. Yin, X. Liao, Y. Yao, Y. Kang, Preparation and magnetic properties of Cu-ferrite nanorods and nanowires, J. Colloid Interface Sci. 317 (2008) 530-535.
DOI: 10.1016/j.jcis.2007.09.095
Google Scholar
[24]
Y.-C. Liu, Y.-P. Fu, Magnetic and catalytic properties of copper ferrite nanopowders prepared by a microwave-induced combustion process, Ceram. Int. 36 (2010) 1597-1601.
DOI: 10.1016/j.ceramint.2010.02.032
Google Scholar
[25]
G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Magnetic irreversibility and relaxation in CuFe2O4 nanoparticles, J. Magn. Magn. Mater. 218 (2000) 221-228.
DOI: 10.1016/s0304-8853(00)00339-5
Google Scholar
[26]
P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution, Cur. Appl. Phys. 11 (2011) 101-108.
DOI: 10.1016/j.cap.2010.06.027
Google Scholar
[27]
M. Sultan, R. Singh, Magnetization and crystal structure of RF-sputtered nanocrystalline CuFe2O4 thin films, Mater. Lett. 63 (2009) 1764-1766.
DOI: 10.1016/j.matlet.2009.05.027
Google Scholar
[28]
W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers, Solid State Sci. 11 (2009) 479-484.
DOI: 10.1016/j.solidstatesciences.2008.06.019
Google Scholar
[29]
N.M. Deraz, A. Alarifi, Synthesis and characterization of pure and Li2O doped ZnFe2O4 nanoparticles via glycine assisted route, Polyhedron 28 (2009) 4122-4130.
DOI: 10.1016/j.poly.2009.09.028
Google Scholar
[30]
Z. Wang, H. Bi, J. Liu, T. Sun, X. Wu, Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite, J. Magn. Magn. Mater. 320 (2008) 2132-2139.
DOI: 10.1016/j.jmmm.2008.03.043
Google Scholar
[31]
Y. Sun, G. Guo, B. Yang, W. Cai, Y. Tian, M. He, Y. Liu, One step solution synthesis of Fe2O3 nanoparticles at low temperature, Physica B 406 (2010) 1013-1016.
DOI: 10.1016/j.physb.2010.12.050
Google Scholar
[32]
D. Peng, S. Beysen, Q. Li, Y. Sun, L. Yang, Hydrothermal synthesis of monodispersed α-Fe2O3 hexagonal platelets, Particuology 8 (2010) 386-389.
DOI: 10.1016/j.partic.2010.05.003
Google Scholar
[33]
B. Hong, C. Qianwang, S. Tao, Preparation of ferromagnetic γ-Fe2O3 nanocrystallites by oxidative co-decomposition of PEG 6000 and ferrocene, Solid State Commun. 141 (2007) 573-576.
DOI: 10.1016/j.ssc.2006.12.011
Google Scholar
[34]
L. Sun, M. Cao, C. Hu, Synthesis and magnetic properties of hollow α-Fe2O3 nanospheres template by carbon nanospheres, Solid State Sci. 12 (2010) 2020-2023.
DOI: 10.1016/j.solidstatesciences.2010.08.020
Google Scholar
[35]
C.D. Lokhande, S.S. Kulkarni, R.S. Mane, S.-H. Han, Room temperature single-step electrosynthesized copper ferrite thin films and study of their magnetic properties, J. Magn. Magn. Mater. 313 (2007) 69-75.
DOI: 10.1016/j.jmmm.2006.12.005
Google Scholar