[1]
Ternes, T., 1998. Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32, 3245–3260.
DOI: 10.1016/s0043-1354(98)00099-2
Google Scholar
[2]
Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E., Zaugg, S. D., Buxton, L. B., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science and Technology, 36, 1202–1211.
DOI: 10.1021/es011055j
Google Scholar
[3]
Boyd, G. R., Reemtsma, H., Grimm, D. A., Mitra, S., 2003. Pharmaceuticals and personalcare products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of the Total Environment, 311, 135–149.
DOI: 10.1016/s0048-9697(03)00138-4
Google Scholar
[4]
Jasim, S. Y., Irabell, A., Yang, P., Ahmed, S., Schweitzer, L. 2006. Presence of pharmaceuticals and pesticides in Detroit river water and the effect of Ozone on removal. Ozone: Science & Engineering, 28, 415–423.
DOI: 10.1080/01919510600985945
Google Scholar
[5]
Na, T., Fang, Z., Zhanqi, G., Cheng, Z., Ming, S., 2006. The status of pesticide residues in the drinking water sources in Meiliangwan bay, Taihu lake of China. Environmental Monitoring and Assessment, 123, 351–370.
DOI: 10.1007/s10661-006-9202-0
Google Scholar
[6]
Pasternak, J., 2006. Agricultural pesticide residues in farm ditches of the lower Fraser Valley, British Columbia, Canada. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41, 647–669.
DOI: 10.1080/03601230600701817
Google Scholar
[7]
Oppenlander, T., 2004. Photochemical purification of water and air. Weinheim, Wiley–VCH.
Google Scholar
[8]
Poyatos, J., Munio, M., Almecija, M., Torres, J., Hontoria, E., Osorio, F., 2009. Advanced oxidation processes for wastewater treatment: state of the art. Water, Air and Soil Pollution , 205, 187–204.
DOI: 10.1007/s11270-009-0065-1
Google Scholar
[9]
Legrini, O., Oliveros, E., Braun, M., 1993. Photochemical processes for water treatment. Chemical Reviews, 93, 671-698.
DOI: 10.1021/cr00018a003
Google Scholar
[10]
Oppenlander T. 2003. Photochemical purification of water and air. Advanced oxidation processes (AOPs): principles, reaction mechanisms, reactor concepts. Weinheim, Wiley-VCH.
DOI: 10.1002/9783527610884.ch1
Google Scholar
[11]
Kisch, H., 1989. What is Photocatalysis, in photocatalysis: Fundamentals and applications, ed by N. Serpone and E. Pelizzetti, 1-7. New York, Wiley.
Google Scholar
[12]
Fenton H. J. J., 1894. Oxidation of tartaric acid in the presence of iron. Journal of Chemical Society, 65, 899-901.
Google Scholar
[13]
Litter, M. I., 1999. Heterogeneous photocatalysis: Transitiion metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23, 89-114.
DOI: 10.1016/s0926-3373(99)00069-7
Google Scholar
[14]
Mills, A., Davies, R. H., Worsley, D. 1993. Water purification by semiconductor photocatalysis. Chemical Society Reviews, 22, 417–425.
DOI: 10.1039/cs9932200417
Google Scholar
[15]
Matthews, R. W., 1988. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. Journal of Catalysis, 111, 264–272.
DOI: 10.1016/0021-9517(88)90085-1
Google Scholar
[16]
Linsebigler, A. L., Lu, G., Yates, J. T., 1995. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758.
DOI: 10.1021/cr00035a013
Google Scholar
[17]
Minero, C., Pelizzetti, E., Malato, S., Blanco, J., 1996. Large solar plant photocatalytic water decontamination: Degradation of atrazine. Solar Energy, 56, 411-419.
DOI: 10.1016/0038-092x(96)00028-x
Google Scholar
[18]
Ollis, D. F., Pelizzetti, E., Serpone, N., 1989. Heterogeneous photocatalysis in environment: Application to water purification. In photocatalysis: Fundamentals and applications, ed by N. Serpone and E. Pelizzetti, Willey Interscience, New York, 603-637.
DOI: 10.1007/978-94-009-4642-2
Google Scholar
[19]
Mills, A., Hunte, S. L., 1997. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35.
DOI: 10.1016/s1010-6030(97)00118-4
Google Scholar
[20]
Carraway, E. R., Hoffmann, A. J., Hoffmann, M. R., 1994. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environmental Science and Technology, 28, 786-793.
DOI: 10.1021/es00054a007
Google Scholar
[21]
Hoffmann, M. R., Martin, S. T., Choi W., Bahnemannt, D. W., 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.
Google Scholar
[22]
Khalil, L. B., Mourad, W. E., Rophael, M. W., 1998. Photocatalytic reduction of environmental pollutant Cr (VI) over some semiconductors under UV/visible light illumination. Applied Catalysis B: Environmental, 17, 267-273.
DOI: 10.1016/s0926-3373(98)00020-4
Google Scholar
[23]
Ohno, T., Tsubota, T., Toyofuku, M., Inaba, R., 2004. Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions have a rutile phase under visible light. Catalysis Letters, 98, 255-258.
DOI: 10.1007/s10562-004-8689-7
Google Scholar
[24]
Fox, M. A., Dulay, M. T., 1993. Heterogeneous Photocatalysis. Chemical Reviews, 93, 341–357.
Google Scholar
[25]
Davis, A. P., Huang, C, P., 1991. The photocatalytic oxidation of sulfur-containing organic compounds using cadmium sulfide and the effect on CdS photocorrosion. Water Research, 25, 1273-1278.
DOI: 10.1016/0043-1354(91)90067-z
Google Scholar
[26]
Reutergardh, L. B., Iangphasuk, M., 1997. Photocatalytic decolorization of reactive Azo dye: A comparison between TiO2 and CdS Photocatalysis. Chemosphere, 35, 585- 596.
DOI: 10.1016/s0045-6535(97)00122-7
Google Scholar
[27]
Deng, N. S., Wu, F., Luo, F., Xiao, M., 1998. Ferric citrate-induced photodegradation of dyes in aqueous solution. Chemosphere, 36, 3101-3112.
DOI: 10.1016/s0045-6535(98)00014-9
Google Scholar
[28]
Bahnemann, D. W., Kholuiskaya, S. N., Dillert, R., Kulak A. I., Kokorin, A. I., 2002. Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Applied Catalysis B: Environmental, 36, 161-169.
DOI: 10.1016/s0926-3373(01)00301-0
Google Scholar
[29]
Arabatzis, I. M., Antonaraki, S., Stergiopoulos, T., Hiskia, A., Papaconstantinou, E., Bernard, M. C., Falaras, P., 2002. Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 149, 237-245.
DOI: 10.1016/s1010-6030(01)00645-1
Google Scholar
[30]
Turchi, C. S., Ollis, D. F., 1989. Mixed reactant photocatalysis : Intermediates and mutual rate inhibition. Journal of Catalysis, 119, 483- 496.
DOI: 10.1016/0021-9517(89)90176-0
Google Scholar
[31]
Pelizzetti, E., Minero, C., Maurino, V., Sclafani, A., Hidaka, H., Serpone, N., 1993. Photocatalytic degradation of nonylphenol ethoxylated surfactants. Environmental Science and Technology, 23, 1380-1385.
DOI: 10.1021/es00069a008
Google Scholar
[32]
Matthews, R. W., 1984. Hydroxylation reactions induced by near-ultraviolet photocatalysis of aqueous titanium dioxide suspensions. Journal of the Chemical Society, Faraday Transactions, 80, 457-471.
DOI: 10.1039/f19848000457
Google Scholar
[33]
Turchi, C. S., Ollis, D, F., 1990. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122, 178-192.
DOI: 10.1016/0021-9517(90)90269-p
Google Scholar
[34]
Serpone, N., Sauve, G., Koch, R., Tahiri, H., Pichat, P., Piccinini, P., Pelizzetti, E., Hidaka, H., 1996. Standadization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: Relative photonic efficiencies. Journal of Photochemistry and Photobiology A: Chemistry, 106, 191-203.
DOI: 10.1016/1010-6030(95)04223-7
Google Scholar
[35]
Augugliaro, V., Davi, E., Palmisano, L., Schiavello, M., Sclafani, A., 1990. Influence of hydrogen peroxide on the kinetics of phenol photodegradation in aqueous titanium dioxide dispersion. Applied Catalysis, 65, 101-116.
DOI: 10.1016/s0166-9834(00)81591-2
Google Scholar
[36]
Sclafani, A., Herrmann, J, M., 1996. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solution. Journal of Physical Chemistry, 100, 13655-13661.
DOI: 10.1021/jp9533584
Google Scholar
[37]
Carp, O., Huisman, C. L., Reller, A., 2004. Induced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33-177.
DOI: 10.1016/j.progsolidstchem.2004.08.001
Google Scholar
[38]
Fujishima, A., Rao, T. N., Tryk, D. A., 2000. Titanium dioxide photocatalysis. Journal of. Photochemistry and Photobiology C: Photochemistry Reviews. 1, 1-21.
DOI: 10.1016/s1389-5567(00)00002-2
Google Scholar
[39]
Cheng, H., Ma, J., Zhao, Z., Qi, L., 1995. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chemistry of Materials, 7, 663-671.
DOI: 10.1021/cm00052a010
Google Scholar
[40]
So, W. W., Park, S. B., Kim, K. J., Shin, C. H., Moon, S. J., 2001. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. Journal of Materials Science, 36, 4299-4305.
Google Scholar
[41]
Xu, T., Song, C., Liu, Y., Han, G., 2006. Band structures of TiO2 doped with N, C and B. Journal of Zhejiang University Science B, 7, 299–303.
Google Scholar
[42]
Corma, A., 1997. From microporous to mesoporous molecular sieve materials and their use in catalysis, Chemical Reviews, 97, 2373-2419.
DOI: 10.1021/cr960406n
Google Scholar
[43]
Yin, H., Wada, Y., Kitamura, T., Kambe, S., Murasawa, S., Mori, H., Sakata, T., Yanagida, S., 2001. Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2, Journal of Materials Chemistry, 11, 1694-1703.
DOI: 10.1039/b008974p
Google Scholar
[44]
Zhang, Z. B., Wang, C. C., Zakaria, R., Ying, J. Y., 1998. Role of particle size in nanocrystalline TiO2 based photocatalysts. Journal of Physical Chemistry B, 102, 10871-10878.
DOI: 10.1021/jp982948+
Google Scholar
[45]
Xu, Z., Shang, J., Liu, C., Kang, C., Guo, H., Du, Y., 1999. The preparation and characterization of TiO2 ultrafine particles. Material Science and Engineering: B, 56, 211-216.
DOI: 10.1016/s0921-5107(99)00084-7
Google Scholar
[46]
Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., Chan, C. K., 2000. Size effect in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. Journal of Catalysis, 192, 185-196.
DOI: 10.1006/jcat.2000.2838
Google Scholar
[47]
Almquist, C. B., Biswas, P., 2002. Role of synthesis method and particle size of nanostructures TiO2 on its photoactivity. Journal of Catalysis, 212, 145-156.
DOI: 10.1006/jcat.2002.3783
Google Scholar
[48]
Hoffman, A. J., Yee, H., Mills, G., Hoffmann, M. R., 1992. Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids. Journal of Physical Chemistry, 96, 5540-5546.
DOI: 10.1021/j100192a066
Google Scholar
[49]
Giuseppe, P. L., Langford, C. H., Vichova, J., Vleck, A., 1993. Photochemistry and picosecond absorption spectra of aqueous suspensions of a polycrystalline titaniumdioxide optically transparent in the visible spectrum. Journal of Photochemistry and Photobiology A: Chemistry, 75, 67-75.
DOI: 10.1016/1010-6030(93)80161-2
Google Scholar
[50]
Wang, C. C., Zhang, Z., Ying, J. Y., 1997. Photocatalytic decomposition of alogenated organics over nanocrystalline titania. Nanostructured Materials, 90, 583-586.
DOI: 10.1016/s0965-9773(97)00130-x
Google Scholar
[51]
Dijkstra, M. F., Panneman, H. J., Winkelman, J. G., Kelly, J. J., Beenackers, A. A., 2002. Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst. Chemical Engineering Science, 57, 4895–4907.
DOI: 10.1016/s0009-2509(02)00290-7
Google Scholar
[52]
Al-Ekabi, H., De Mayo, P., 1986. Surface Photochemistry: On the Mechanism of the Semiconductor Photoinduced Valence Isomerization of Hexamethyl-Dewar Benzene to Hexamethylbenzene. Journal of Physical Chemistry, 90, 4075-4080.
DOI: 10.1021/j100408a048
Google Scholar
[53]
Cunningham, J., Srijaranci, S. J., 1991. Sensitized photo-oxidations of dissolved alcohols in homogenous and heterogeneous systems Part 2. TiO2-sensitized hotodehydrogenations of benzyl alcohol. Journal of Photochemistry and Photobiology A: Chemistry, 58, 361-371.
DOI: 10.1016/1010-6030(91)87055-z
Google Scholar
[54]
Martin, S. T., Herrmann, H., Choi, W., Hoffmann, M. R., 1994. Time-resolved microwave conductivity. Part1-TiO2 photoreactivity and size quantization. Journal of the Chemical Society, Faraday Transactions, 90, 3315-3323.
DOI: 10.1039/ft9949003315
Google Scholar
[55]
Peill, N. J., Hoffmann, M. R., 1998. Mathematical model of photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis. Environmental Science and Technology, 32, 398-404.
DOI: 10.1021/es960874e
Google Scholar
[56]
Haque, M. M., Muneer, M., Bahnemann, D. W., 2006. Semiconductor-mediated photocatalyzed degradation of a herbicide derivative, chlorotoluron, in aqueous suspensions. Environmental Science and Technology, 40, 4765-4770.
DOI: 10.1021/es060051h
Google Scholar
[57]
Saaduon, L., Ayllon, J. A., Jimenez. Becerril, J., Peral, J., Domenech, X., Rodriguez., Clemente, R., 1999. 1, 2-diolates of titanium as suitable precursors for the preparation of photoactive high surface titania. Applied Catalysis B: Environmental, 21, 269-277.
DOI: 10.1016/s0926-3373(99)00031-4
Google Scholar
[58]
Chen, D., Ray, A. K., 1999. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Applied Catalysis B: Environmental, 23, 143-147.
DOI: 10.1016/s0926-3373(99)00068-5
Google Scholar
[59]
Sriprang, N., Kaewchinda, D., Kennedy1, J. D., Milne, S. J., 2000. Processing and sol chemistry of a triol-based sol–gel route for preparing lead zirconate titanate thin films. Journal of American Ceramic Society, 83, 1914-1920.
DOI: 10.1111/j.1151-2916.2000.tb01490.x
Google Scholar
[60]
Yoshiya, K., Shin-ya, M., Hiroshi, K., Bunsho, O., 2002. Design, preparation and characterization of highly active metal oxide photocatalysts. In: Photocatalysis: science and technology. Kaneko, M., Okura, I., (eds.). Berlin Heidelberg New York, Springer-Verlag: 29-49.
Google Scholar
[61]
Hu, C., Tang, Y., Jiang, Z., Hao, Z., Tang, H., Wong, P. K., 2003. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Applied Catalysis A: General, 253, 389-369.
DOI: 10.1016/s0926-860x(03)00545-3
Google Scholar
[62]
Alfano, O. M., Bahnemann, D., Cassano, A. E., Dillert, R., Goslich, R., 2000. Photocatalysis in water environments using artificial and solar light. Catalysis Today, 58, 199-230.
DOI: 10.1016/s0920-5861(00)00252-2
Google Scholar
[63]
Pruden, A. L., Ollis, D. F., 1983. Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of TiO2. Environmental Science and Technology, 17, 628-631.
DOI: 10.1021/es00116a013
Google Scholar
[64]
Robertson, K. J., Bahnemann, D. W., Robertson, J. M. C., Wood F., 2005. Photocatalytic detoxification of water and air. In: Environmental photochemistry. Part II. Boule, P., Bahnemann, D. W., Robertson P. (eds.). Berlin Heidelberg, Springer-Verlag, 367-423.
DOI: 10.1007/b138189
Google Scholar
[65]
Wiszniowski, J., Robert, D., Surmacz., Gorska, J., Miksch, K., Malato, S., Weber, J. V., 2004. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts. Applied Catalysis B: Environmental, 33, 127-137.
DOI: 10.1016/j.apcatb.2004.04.017
Google Scholar
[66]
Lawton, L. A., Robertson, P. K. J., Cornish, B. J. P. A., Jaspars, M., 1999. Detoxification of microcystins (cyanobacterial hepatotoxins) using TiO2 photocatalytic oxidation. Environmental Science and Technology, 33, 771-775.
DOI: 10.1021/es9806682
Google Scholar
[67]
Sichel C., Blanco J., Malato S. Fernández-Ibáñez P., 2007. Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. Journal of Photochemistry and Photobiology A: Chemistry, 189, 239-246.
DOI: 10.1016/j.jphotochem.2007.02.004
Google Scholar
[68]
Maness P.-C., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., Jacoby W.A. 1999. Bactericidal activity of photocatalytic TiO reaction: toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 265, 4094-4098.
DOI: 10.1128/aem.65.9.4094-4098.1999
Google Scholar
[69]
Ollis, D. F., Turchi, C., 1990. Heterogeneous photocatalysis for water purification: contaminant mineralization kinetics and elementary reactor analysis. Environmental Progress, 9, 229–234.
DOI: 10.1002/ep.670090417
Google Scholar
[70]
Herrmann, J., 2005. Heterogeneous photocatalysis: State of the art and present applications. Topics in Catalysis, 34, 49–65.
Google Scholar
[71]
Fujishima, A., Zhang, X., 2006. Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie , 9, 750–760.
DOI: 10.1016/j.crci.2005.02.055
Google Scholar
[72]
Natarajan T. S., Thomas M., Natarajan, K., Bajaj, H. C., Tayade, R. J., 2011. Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chemical Engineering Journal, 169,126–134.
DOI: 10.1016/j.cej.2011.02.066
Google Scholar
[73]
Natarajan, T. S., Natarajan, K., Bajaj, H. C., Tayade, R. J., 2011. Energy Efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application. Industrial & Engineering Chemistry Research, 50, 7753-7762.
DOI: 10.1021/ie200493k
Google Scholar