Photocatalytic Reduction of Carbon Dioxide

Article Preview

Abstract:

World is facing problems of global warming as well as energy crisis. Both these problems can be solved to a reasonable extent by photoreduction of carbon dioxide. Here, photocatalysis enters the scene. Photocatalytic reduction to synthetic organic fuels like formaldehyde, methanol, formic acid, acetic acid, methane, etc. will provide a solution to the problem of energy crisis as it will give us alternate fuels, which can be burnt into fuel cells to generate electricity. Once we get electricity at the cost of carbon dioxide, one can convert this form of energy to any other form of energy. Secondly, it will give a solution to put a check on the increasing amount of carbon dioxide, which is the main culprit of global warming. Any conventional fuel on burring will add some molecules of carbon dioxide in the atmosphere, but synthetic fuels derived by photocatalytic reduction of carbon dioxide will not add even a single molecule of carbon dioxide in the environment. It can be considered as a short term loan of carbon dioxide from the atmosphere as the carbon dioxide molecules utilized in the synthesis of alternate fuels are generated back on burning it in fuel cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-96

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. G. Russell, N. Kovac, S. Srinivasan, M. Steinberg, The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde, J. Electrochem. Soc., 124(9) (1977) 1329-1338.

DOI: 10.1149/1.2133624

Google Scholar

[2] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspension of semiconductor powders , Nature (London), 277 (5698) (1979) 637-638.

DOI: 10.1038/277637a0

Google Scholar

[3] B. Aurian-Blajeni, M. Halmann, J. Manassen, Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials, Solar Energy, 25(2) (1980) 165-170.

DOI: 10.1016/0038-092x(80)90472-7

Google Scholar

[4] K. Tennakone, A. H. Jayatissa, S. Punchihewa, Selective photoreduction of carbon dioxide to methanol with hydrous cuprous oxide, J. Photochem. Photobiol. A: Chem., 49(3) (1989) 369-375.

DOI: 10.1016/1010-6030(89)87134-5

Google Scholar

[5] L. B. Khalil, N. S. Youssef, M. W. Rophael, M. M. Moawad, Reduction of aqueous carbonate photocatalysed by treated semiconductors, J. Chem. Tech. Biotech., 55 (1992) 391-396.

DOI: 10.1002/jctb.280550415

Google Scholar

[6] M. Kanemoto, H. Ankyu, Y. Wada, S. Yanagida, Semiconductor photocatalysis. Part 14. Visible-light induced photofixation of carbon dioxide into benzophenone catalyzed by colloidal CdS microcrystallites, Chem. Lett., 11 (1992) 2113-2114

DOI: 10.1246/cl.1992.2113

Google Scholar

[7] R. Eggins, P. K. J. Robertson, J. H. Stewart, E. Woods, Photoreduction of carbon dioxide on zinc sulfide to give four-carbon and two-carbon acids, J. Chem. Soc., Chem. Commun., 4 (1993) 349-350.

DOI: 10.1039/c39930000349

Google Scholar

[8] S. -P. Xu, H. D. Gafney, Photocatalyzed conversion of carbon dioxide to methane, Proc. Electrochem. Soc., 93-18 (1993) 38-46.

Google Scholar

[9] M. A. Malati, L. Attubato, K. Beaney, Efficient photocatalysts for the reduction of aqueous carbonate and Cr (VI), Sol. Energy Mater. Sol. Cells, 40(1) (1996) 1-4.

DOI: 10.1016/0927-0248(95)00059-3

Google Scholar

[10] S. Kaneco, H. Kurimoto, K. Ohta, T. Mizuno, A. Saji, Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium, J. Photochem. Photobiol. A: Chem., 109(1) (1997) 59-63.

DOI: 10.1016/s1010-6030(97)00107-x

Google Scholar

[11] T. S. Dzhabiev, Photoreduction of carbon dioxide with water in the presence of SiC/ZnO heterostructural semiconductor materials, Kinet. Catal., 38(6) (1997) 795-800.

Google Scholar

[12] S. Yanagida, M. Kanemoto, K. -I. Ishihara, Y. Wada, T. Sakata, H. Mori, Semiconductor photocatalysis. Part 22. Visible-light induced photoreduction of CO2 with CdS nanocrystallites - Importance of the morphology and surface structures controlled through solvation by N,N-dimethylformamide, Bull. Chem. Soc. Jpn., 70(9) (1997) 2063-207.

DOI: 10.1246/bcsj.70.2063

Google Scholar

[13] S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno, Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger, J. Photochem. Photobiol. A: Chem., 115(3) (1998) 223-226.

DOI: 10.1016/s1010-6030(98)00274-3

Google Scholar

[14] H. Yamashita, S. Kawasaki, M. Takeuchi, Y. Fujii, Y. Ichihashi, Y. Suzuki, S. Park, J. Chang, J. W. Yoo, M. Anpo, Photocatalytic reduction of CO2 with H2O on Ti/Si binary oxide catalysts prepared by the sol-gel method, Stud. Surf. Sci. Catal., 114 (1998) 561-564.

DOI: 10.1016/s0167-2991(98)80821-5

Google Scholar

[15] S. Yanagida, Y. Wada, K. Murakoshi, H. Fujiwara, T. Sakata, H. Mori, Photocatalytic reduction and fixation of CO2 on cadmium sulfide nanocrystallites, Stud. Surf. Sci. Catal., 114 (1998) 183-188.

DOI: 10.1016/s0167-2991(98)80741-6

Google Scholar

[16] S. Kaneco, H. Kurimoto, Y. Shimizu, K. Ohta, T. Mizuno, Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2, Energy, 24(1) (1999) 21-30.

DOI: 10.1016/s0360-5442(98)00070-x

Google Scholar

[17] Y. Kohno, T. Tanaka, T. Funabiki, S. Yoshida, Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2, Phys. Chem. Chem. Phys., 2(11) (2000) 2635-2639.

DOI: 10.1039/b001642j

Google Scholar

[18] Y. Kohno, H. Ishikawa, T. Tanaka, T. Funabiki, S. Yoshida, Photoreduction of carbon dioxide by hydrogen over magnesium oxide, Phys. Chem. Chem. Phys., 3(6) (2001) 1108-1113.

DOI: 10.1039/b008887k

Google Scholar

[19] G. Guan, T. Kida, T. Harada, M. Isayama, A. Yoshida, Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight, Appl. Catal. A: Gen., 249(1) (2003) 11-18.

DOI: 10.1016/s0926-860x(03)00205-9

Google Scholar

[20] G. R. Dey, A. D. Belapurkar, K. Kishore, Photocatalytic reduction of carbon dioxide to methane using TiO2 as suspension in water, J. Photochem. Photobiol. A: Chem., 163(3) (2004) 503-508.

DOI: 10.1016/j.jphotochem.2004.01.022

Google Scholar

[21] K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno, T. Funabiki, Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO, J. Phys. Chem. B, 108 (2004) 346-354.

DOI: 10.1021/jp0362943

Google Scholar

[22] P. Pathak, M. J. Meziani, Y. Li, L. T. Cureton, Y. -P. Sun, Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts, Chem. Commun., 10(10) (2004) 1234-1235.

DOI: 10.1039/b400326h

Google Scholar

[23] S. S. Tan, L. Zou, E. Hu, Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets, Catal. Today, 115(1–4) (2006) 269-273.

DOI: 10.1016/j.cattod.2006.02.057

Google Scholar

[24] P. –W. Pan, Y. –W. Chen, Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation, Catal. Commun., 8(10) (2007) 1546-1549.

DOI: 10.1016/j.catcom.2007.01.006

Google Scholar

[25] K. Teramura, H. Tsuneoka, T. Shishido, T. Tanaka, Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst, Chem. Phys. Lett., 467(1-3) (2008) 191-194.

DOI: 10.1016/j.cplett.2008.10.079

Google Scholar

[26] Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, M. Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst, Catal. Commun., 11(3) (2009) 210-213.

DOI: 10.1016/j.catcom.2009.10.010

Google Scholar

[27] K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský, O. Šolcová, Effect of TiO2 particle size on the photocatalytic reduction of CO2, Appl. Catal., B: Environ., 89(3–4) (2009) 494-502.

DOI: 10.1016/j.apcatb.2009.01.010

Google Scholar

[28] K. Kočí, K. Matějů, L. Obalová, S. Krejčíková, Z. Lacný, D. Plachá, L. Čapek, A. Hospodková, O. Šolcová, Effect of silver doping on the TiO2 for photocatalytic reduction of CO2, Appl. Catal., B: Environ., 96(3–4) (2010) 239-244.

DOI: 10.1016/j.apcatb.2010.02.030

Google Scholar

[29] S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts, J. Colloid Interface Sci., 356(1) (2011) 257-261.

DOI: 10.1016/j.jcis.2010.12.034

Google Scholar

[30] C. Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts, J. Mater. Chem., 21(35) (2011) 13452-13457.

DOI: 10.1039/c1jm12367j

Google Scholar

[31] D. S. Lee, H. Chen, Y. Chen, Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 cocatalysts, J. Phys. Chem. Solids, 73(5) (2012) 661-669.

DOI: 10.1016/j.jpcs.2012.01.005

Google Scholar

[32] F. Sastre, A. Corma, H. García, 185 nm photoreduction of CO2 to methane by water. Influence of the presence of a basic catalyst, J. Am. Chem. Soc., 134(34) (2012) 14137-14141.

DOI: 10.1021/ja304930t

Google Scholar

[33] T. S. Dzhabiev, B. B. Tarasov, A. M. Uskov, Photocatalytic reduction of carbon dioxide in aqueous semiconductor suspensions, Catal. Today, 13 (4) (1992) 695-696.

DOI: 10.1016/0920-5861(92)80113-2

Google Scholar

[34] O. Ishitani, C. Inoue, Y. Suzuki, T. Ibusuki, Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2, J. Photochem. Photobiol. A: Chem., 72(3) (1993) 269-271.

DOI: 10.1016/1010-6030(93)80023-3

Google Scholar

[35] H. Inoue, H. Moriwaki, K. Maeda, H. Yoneyama, Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals, J. Photochem. Photobiol. A: Chem., 86(1-3) (1995) 191-196.

DOI: 10.1016/1010-6030(94)03936-o

Google Scholar

[36] Y. Kohno, T. Tanaka, T. Funabiki, S. Yoshida, H. Hayashi, S. Takenaka, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2, J. Photochem. Photobiol. A: Chem., 126(1-3) (1999) 117-123.

DOI: 10.1016/s1010-6030(99)00113-6

Google Scholar

[37] I. H. Tseng, W. C. Chang, J. C. S. Wu, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts, Appl. Catal., B: Environ., 37(1) (2002) 37-48.

DOI: 10.1016/s0926-3373(01)00322-8

Google Scholar

[38] G. Guan, T. Kida, A. Yoshida, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst, Appl. Catal., B: Environ., 41(4) (2003) 387-396.

DOI: 10.1016/s0926-3373(02)00174-1

Google Scholar

[39] I. -H. Tseng, J. C. S. Wu, H. -Y. Chou, Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 Photoreduction, J. Catal., 221(2) (2004) 432-440.

DOI: 10.1016/j.jcat.2003.09.002

Google Scholar

[40] Slamet, H. W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method, Catal. Commun., 6(5) (2005) 313-319.

DOI: 10.1016/j.catcom.2005.01.011

Google Scholar

[41] N. Sasirekha, S. J. S. Basha, K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal., B: Environ., 62(1–2) (2006) 169-180.

DOI: 10.1016/j.apcatb.2005.07.009

Google Scholar

[42] K. Kočí, K. Zatloukalová, L. Obalová, S. Krejčíková, Z. Lacný, L. Čapek, A. Hospodková, O. Šolcová, Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst, Chin. J. Catal., 32(5) (2011) 812-815.

DOI: 10.1016/s1872-2067(10)60199-4

Google Scholar

[43] J. -M. Lehn, R. Ziessel, Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t́-bipyridine- or 1,10-phenanthroline-ruthenium (II) complexes, J. Organomet. Chem. , 382(1-2) (1990) 157-173.

DOI: 10.1016/0022-328x(90)85224-m

Google Scholar

[44] G. Calzaferri, K. Hädener, J. Lij, Photoreduction and electroreduction of carbon dioxide by a novel rhenium (I) p-phenyl-terpyridine carbonyl complex, Photochem. Photobiol. A : Chem., 64 (1992) 259.

DOI: 10.1016/1010-6030(92)85113-9

Google Scholar

[45] E. Kimura, X. Bu, M. Shionoya, S. Wada, S. Maruyama, A new nickel (II) cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) complex covalently attached to Ru(phen)32+ (phen = 1,10-phenanthroline). A new candidate for the catalytic photoreduction of carbon dioxide, Inorg. Chem., 31(22) (1992) 4542-4546.

DOI: 10.1021/ic00048a020

Google Scholar

[46] S. C. Ameta, B. K. Sharma, R. Ameta, J. Kaur, Photocatalytic reduction of carbon dioxide over ferrocyanide-coated titanium dioxide powder, Int. J. Energ. Res., 21(10) (1998) 923–929.

DOI: 10.1002/(sici)1099-114x(199708)21:10<923::aid-er299>3.3.co;2-2

Google Scholar

[47] B. K. Sharma, Ph. D. Thesis, M. L. Sukhadia University, Udaipur, India (1992).

Google Scholar

[48] H. Hori, J. Ishihara, K. Koike, K. Takeuchi, T. Ibusuki, O. Ishitani, Photocatalytic reduction of carbon dioxide using [fac-Re(bpy)(CO)3(4-Xpy)]+ (Xpy = pyridine derivatives), J. Photochem. Photobiol. A: Chem., 120(2) (1999) 119-124.

DOI: 10.1016/s1010-6030(98)00430-4

Google Scholar

[49] J. Grodkowski, T. Dhanasekaran, P. Neta, P. Hambright, B. S. Brunschwig, K. Shinozaki, E. Fujita, Reduction of cobalt and iron phthalocyanines and the role of the reduced species in catalyzed photoreduction of CO2, J. Phys. Chem. A , 104(48) (2000) 11332-11339.

DOI: 10.1021/jp002709y

Google Scholar

[50] S. Jain, J. Vardia, A. Sharma, S. C. Ameta, Photocatalytic reduction of carbonates and formation of some energy rich systems in presence of toluidine blue, Int. J. Energ. Res., 25 (2001) 107-113.

DOI: 10.1002/er.664

Google Scholar

[51] H. Hori, K. Koike, Y. Suzuki, M. Ishizuka, J. Tanaka, K. Takeuchi, Y. Sasaki, High-pressure photocatalytic reduction of carbon dioxide using [fac-Re(bpy)(CO)3P(OiPr)3]+ (bpy = 2,2'-bipyridine), J. Mol. Catal. A: Chem., 179(1–2) (2002) 1-9.

DOI: 10.1016/s1381-1169(01)00398-3

Google Scholar

[52] T. Hirose, Y. Maeno, Y. Himeda, Photocatalytic carbon dioxide photoreduction by Co(bpy)32+ sensitized by Ru(bpy)32+ fixed to cation exchange polymer, J. Mol. Catal. A: Chem., 193(1–2) (2003) 27-32.

DOI: 10.1016/s1381-1169(02)00478-8

Google Scholar

[53] A. Rios, M. Villagran, J. Costamagna, G. Ferraudi, Intermediates in the Ni II(2,4,9,11-tetramethyl-Napho2 [14]-2,4,6,9,11,13-hexaeneN4)-catalyzed photoreduction of CO2 to CO: A pulse-radiolytic and flash-photochemical study, J. Coord. Chem., 56(14) (2003) 1233-1244.

DOI: 10.1080/00958970310001629118

Google Scholar

[54] S. Liu, Z. Zhao, Z. Wang, Photocatalytic reduction of carbon dioxide using sol-gel derived titania-supported CoPc catalysts, Photochem. Photobiol. Sci., 6(6) (2007) 695-700.

DOI: 10.1039/b613098d

Google Scholar

[55] H. Takeda , K. Koike , H. Inoue , O. Ishitani , Development of an efficient photocatalytic system for CO2 reduction using rhenium (I) complexes based on mechanistic studies, J. Am. Chem. Soc., 130 (6) (2008) 2023–2031.

DOI: 10.1021/ja077752e

Google Scholar

[56] Z. Zhao, J. Fan, M. Xie, Z. Wang, Photocatalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation, J. Clean. Prod., 17(11) (2009) 1025-1029.

DOI: 10.1016/j.jclepro.2009.02.016

Google Scholar

[57] M. Schulz, M. Karnahl, M. Schwalbe, J. G. Vos, The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide, Coord. Chem. Rev., 256(15–16) (2012) 1682-1705.

DOI: 10.1016/j.ccr.2012.02.016

Google Scholar

[58] E. Portenkirchner, K. Oppelt, C. Ulbricht, D. A. M. Egbe, H. Neugebauer, G. Knör, N. S. Sariciftci, Electrocatalytic and photocatalytic reduction of carbon dioxide to carbon monoxide using the alkynyl-substituted rhenium (I) complex (5,5'-bisphenylethynyl-2,2'-bipyridyl) Re(CO)3Cl, J. Organomet. Chem., 716 (2012) 19-25.

DOI: 10.1016/j.jorganchem.2012.05.021

Google Scholar

[59] C. D. Windle, M. V. Câmpian, A. -K. Duhme-Klair, E. A. Gibson, R. N. Perutz, J. Schneider, CO2 photoreduction with long-wavelength light: Dyads and monomers of zinc porphyrin and rhenium bipyridine, Chem. Commun., 48(66) (2012) 8189-8191.

DOI: 10.1039/c2cc33308b

Google Scholar

[60] D. Liu, Y. Fernández, O. Ola, S. MacKintosh, M. Maroto-Valer, C. M. A. Parlett, A. F. Lee, J. C. S. Wu, On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2 Catal. Commun., 25 (2012) 78-82.

DOI: 10.1016/j.catcom.2012.03.025

Google Scholar

[61] B. –J. Liu, T. Torimoto, H. Matsumoto, H. Yoneyama, Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices, J. Photochem. Photobiol. A: Chem., 108 (2–3) (1997) 187-192.

DOI: 10.1016/s1010-6030(97)00082-8

Google Scholar

[62] J. Premkumar, R. Ramaraj, Photocatalytic reduction of carbon dioxide to formic acid at porphyrin and phthalocyanine adsorbed Nafion membranes, J. Photochem. Photobiol. A: Chem., 110 (1) (1997) 53-58.

DOI: 10.1016/s1010-6030(97)00156-1

Google Scholar

[63] M. Anpo , H. Yamashita , Y. Ichihashi , Y. Fujii, M. Honda, Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites:  Effects of the structure of the active sites and the addition of Pt, J. Phys. Chem. B, 101 (14) (1997) 2632–2636.

DOI: 10.1021/jp962696h

Google Scholar

[64] P. Johne, H. Kisch, Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders, J. Photochem. Photobiol. A: Chem., 111(1-3) (1997) 223-228.

DOI: 10.1016/s1010-6030(97)00228-1

Google Scholar

[65] B. –J. Liu, T. Torimoto, H. Yoneyama, Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices, J. Photochem. Photobiol. A: Chem., 115 (3) (1998) 227-230.

DOI: 10.1016/s1010-6030(98)00272-x

Google Scholar

[66] T. Torimoto, B. Liu, H. Yoneyama, Effect of solvents on photocatalytic reduction of carbon dioxide using semiconductor photocatalysts, Stud. Surf. Sci. Catal., 114 (1998) 553-556.

DOI: 10.1016/s0167-2991(98)80819-7

Google Scholar

[67] B. Liu, T. Torimoto, H. Yoneyama, Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents, J. Photochem. Photobiol. A: Chem., 113(1) (1998) 93-97.

DOI: 10.1016/s1010-6030(97)00318-3

Google Scholar

[68] H. Yamashita, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves, Catal. Today, 450(1–4) (1998) 221-227.

DOI: 10.1016/s0920-5861(98)00219-3

Google Scholar

[69] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, Y. Ichihashi, S. G. Zhang, D. R. Park, S. Ehara, S. Park, J. Chang, and J. W. Yoo, Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within zeolites, Stud. Surf. Sci. Catal., 114 (1998) 177-182.

DOI: 10.1016/s0167-2991(98)80740-4

Google Scholar

[70] M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity, Appl. Catal., B: Environ., 23(2-3) (1999) 169-174.

DOI: 10.1016/s0926-3373(99)00079-x

Google Scholar

[71] K. Ikeue , H. Yamashita, M. Anpo, Photocatalytic reduction of CO2 with H2O on Ti−β zeolite photocatalysts:  Effect of the hydrophobic and hydrophilic properties, J. Phys. Chem. B, 105 (35) (2001) 8350–8355.

DOI: 10.1021/jp010885g

Google Scholar

[72] H. Yamashita, M. Okazaki, K. Ikeue, M. Anpo, Photocatalytic reduction of CO2 with H2O on Ti-containing mesoporous silica hydrophobically modified using fluoride ions, Stud. Surf. Sci. Catal., 153 (2004) 289-294.

DOI: 10.1016/s0167-2991(04)80266-0

Google Scholar

[73] J. -S. Hwang, J. -S. Chang, S. -E. Park, K. Ikeue, M. Anpo, High performance photocatalytic reduction of CO2 with H2O by TiSBA-15 mesoporous material, Stud. Surf. Sci. Catal., 153 (2004) 299-302.

DOI: 10.1016/s0167-2991(04)80268-4

Google Scholar

[74] H. -C. Yang, H. -Y. Lin, Y. -S. Chien, J. C. -S. Wu, H. -H. Wu, Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol, Catal. Lett., 131(3-4) (2009) 381-387.

DOI: 10.1007/s10562-009-0076-y

Google Scholar

[75] H. Li, Y. Lei, Y. Huang, Y. Fang, Y. Xu, L. Zhu, X. Li, Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation, J. Nat. Gas Chem., 20(2) (2011) 145-150.

DOI: 10.1016/s1003-9953(10)60166-1

Google Scholar

[76] D. Luo, Y. Bi, W. Kan, N. Zhang, S. Hong, Copper and cerium co-doped titanium dioxide on catalytic photoreduction of carbon dioxide with water: Experimental and theoretical studies, J. Mol Struct., 994(1–3) (2011) 325-331.

DOI: 10.1016/j.molstruc.2011.03.044

Google Scholar

[77] P. L. Richardson, M. L. N. Perdigoto, W. Wang, R. J. G. Lopes, Manganese- and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol, Appl. Catal., B: Environ., 126 (2012) 200-207.

DOI: 10.1016/j.apcatb.2016.02.053

Google Scholar

[78] Q. Zhang, W. Han, Y. Hong, J. Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst, Catal. Today, 148(3–4) (2009) 335-340.

DOI: 10.1016/j.cattod.2009.07.081

Google Scholar

[79] L. Chen, M. E. Graham, G. Li, D. R. Gentner, N. M. Dimitrijevic, K. A. Gray, Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition, Thin Solid Films, 517(19) (2009) 5641-5645.

DOI: 10.1016/j.tsf.2009.02.075

Google Scholar

[80] J. Fan, E. Liu, B. Zeng, X. Hu, G. Chen, J. Yuan, Performance of Fe3+-doped nano titania catalyst in photocatalytic reduction of CO2, Shiyou Huagong/Petrochem. Technol., 38(7) (2009) 789-794.

Google Scholar

[81] T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale, F. A. Armstrong, Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light, J. Am. Chem. Soc., 132(7) (2010) 2132-2133.

DOI: 10.1021/ja910091z

Google Scholar

[82] Q. Zhang, T. Gao, J. M. Andino, Y. Li, Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor, Appl. Catal., B: Environ., 123-124 (2012) 257-264.

DOI: 10.1016/j.apcatb.2012.04.035

Google Scholar

[83] X. Li, H. Pan, W. Li, Z. Zhuang, Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts, Appl. Catal., B: Gen., 413-414 (2012) 103-108.

DOI: 10.1016/j.apcata.2011.10.044

Google Scholar

[84] D. Luo, N. Zhang, S. Hong, H. Wu, Z. Liu, Complexes in the photocatalytic reaction of CO2 and H2O: Theoretical studies, Int. J. Mol. Sci., 11(8) (2010) 2792-2804.

DOI: 10.3390/ijms11082792

Google Scholar

[85] A. M. Khenkin, I. Efremenko, L. Weiner, J. M. L. Martin, R. Neumann, Photochemical reduction of carbon dioxide catalyzed by a ruthenium substituted polyoxometalate, Chemistry - A Europ. J., 16(4) (2010) 1356-1364.

DOI: 10.1002/chem.200901673

Google Scholar

[86] I. Kocemba, J. Nadajczyk, J. Góralski, M. Szynkowska, Photoreduction of carbon dioxide with hydrogen using temperature programmed method, Pol. J. Chem Tech., 12(3) (2010) 1-2.

DOI: 10.2478/v10026-010-0022-1

Google Scholar

[87] J. Jensen, M. Mikkelsen, F. C. Krebs, Flexible substrates as basis for photocatalytic reduction of carbon dioxide, Sol. Energy Mater. Sol. Cells, 95(11) (2011) 2949-2958.

DOI: 10.1016/j.solmat.2011.06.040

Google Scholar

[88] K. Kočí, M. Reli, O. Kozák, Z. Lacný, D. Plachá, P. Praus, L. Obalová, Influence of reactor geometry on the yield of CO2 photocatalytic reduction, Catal. Today, 176(1) (2011) 212-214.

DOI: 10.1016/j.cattod.2010.12.054

Google Scholar

[89] W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, S. B. Cronin, Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions, ACS Catalysis 1(8) (2011) 929-936.

DOI: 10.1021/cs2001434

Google Scholar

[90] Y. T. Liang, B. K. Vijayan, K. A. Gray, M. C. Hersam, Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production, Nano Lett., 11 (7) (2011) 2865-2870.

DOI: 10.1021/nl2012906

Google Scholar

[91] Q. Zhang, Y. E. A. Ackerman, M. Gajdardziska-Josifovska, H. Li, Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels, Appl. Catal., A: Gen. 400 (1-2) (2011) 195-202.

DOI: 10.1016/j.apcata.2011.04.032

Google Scholar

[92] N. Ahmed, N. Shibata, T. Taniguchi, Y. Izumi, Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M (III) (M = aluminum, gallium) layered double hydroxides, J. Catal., 279 (1) (2011) 123-135.

DOI: 10.1016/j.jcat.2011.01.004

Google Scholar

[93] P. -Y. Liou, S. -C Chen, J. C. S. Wu, D. Liu, S. MacKintosh, M. Maroto-Valer, R. Linforth, Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor, Energy Environ. Sci., 4 (4) (2011) 1487-1494

DOI: 10.1039/c0ee00609b

Google Scholar

[94] V. Jeyalakshmi, R. Mahalakshmy, K. R. Krishnamurthy, B. Viswanathan, Catalysts for photoreduction of carbon dioxide: Role of modifiers, Indian J. Chem., A, 51(9-10) (2012) 1263-1283.

Google Scholar

[95] L. Liu, H. Zhao, J. M. Andino, Y. Li, Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry, ACS Catalysis, 2(8) (2012) 1817-1828.

DOI: 10.1021/cs300273q

Google Scholar

[96] X. Li, W. Li, Z. Zhuang, Y. Zhong, Q. Li, L. Wang, Photocatalytic reduction of carbon dioxide to methane over SiO2-pillared HNb3O8, J. Phys. Chem. C, 116(30) (2012) 16047-16053.

DOI: 10.1021/jp303365z

Google Scholar

[97] Qina, G.; Zhanga, Y.; Keb, X.; Tonga, X.; Suna, Z.; Lianga, M.; Xuea, S. Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film, Appl. Catal. B: Environ. 129 (2013) 599– 605.

DOI: 10.1016/j.apcatb.2012.10.012

Google Scholar