Influence of Mn2+ Ion on the Surface of BiOCl Catalyst for Photocatalytic Degradation of Methylene Green under Visible Light Illumination

Article Preview

Abstract:

In the present investigation, hydrolysis method has been used to synthesize mangnese doped BiOCl. The catalyst was characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM) and diffusive reflectance spectra (DRS) methods. Interesting results have been obtained from diffusive reflectance spectra which depicted that there is a shift in the optical absorption edge towards higher wavelength, which indicates a decrease in the band gap upon Mn doping. The photocatalytic activity of Mn doped catalyst was evaluated from the photodegradation of methylene green (MG) aqueous solution under visible light irradiation. Mn2+ doping effectively improved the photocatalytic activity of BiOCl under visible light irradiation. The possible degradation pathway has been proposed for the photocatalytic degradation by using certain radical scavengers. The photocatalytic reaction mechanism of Mn doped BiOCl catalyst has also been tentatively discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-205

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Rao, B. Sivasankar, V. Sadasivam, Kinetic studies on the photocatalytic degradation of direct yellow 12 in the presence of ZnO catalyst, J. Mol. Catal. A: Chem. 306 (2009) 77-81.

DOI: 10.1016/j.molcata.2009.02.028

Google Scholar

[2] B. Pare, S.B. Jonnalagadda, H.S Tomar, V.W. Bhagwat, P. Singh, ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation, Desalination 232 (2008) 80-90.

DOI: 10.1016/j.desal.2008.01.007

Google Scholar

[3] J. Wade, An Investigation of TiO2-ZnFe2O4 Nanocomposites for Visible Light Photocatalysis, Department of Electrical Engineering College of Engineering University of South Florida.

Google Scholar

[4] M. Shang, W. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template, J. Hazard. Mater. 167 (2009) 803-809.

DOI: 10.1016/j.jhazmat.2009.01.053

Google Scholar

[5] K.L. Zhang, C.M. Liu, F.Q Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Appl. Catal. B: Environ. 68 (2006) 125-129.

DOI: 10.1016/j.apcatb.2006.08.002

Google Scholar

[6] X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, Generalized one-pot synthesis, characterization and photocatalytic activity of hierarchical BiOX (X= Cl, Br, I) nanoplates microspheres, J. Phys. Chem. C 112 (2008) 747-753.

DOI: 10.1021/jp077471t

Google Scholar

[7] C. Wang, C. Shao, Y. Liuc, L. Zhang, Photocatalytic properties of BiOCl and Bi2O3 nanofibers prepared by electrospinning, Scripta Mater. 59 (2008) 332-335.

DOI: 10.1016/j.scriptamat.2008.03.038

Google Scholar

[8] D.P. Bisena, R. Sharma, N. Brahmea, R. Tamrakar, Effect of temperature on the synthesis of CdS:Mn doped nanoparticles, Chalcogenide Letters 6 (2009) 427-431.

Google Scholar

[9] L.C. Chen, C.M. Huang, F.R. Tsai, Characterization and photocatalytic activity of K+-doped TiO2 photocatalysts, J. Mol. Catal. A: Chem. 265 (2006) 133-140.

Google Scholar

[10] APHA, Standard methods for examination of water and wastewater (American water workers Association, New York), 6th Edn (1985) 535.

Google Scholar

[11] D. Sasanka, P.A. Joy, Synthesis and magnetic properties of Mn doped ZnO nanowires, Solid State Comm. 142 (2007) 190-194.

DOI: 10.1016/j.ssc.2007.02.017

Google Scholar

[12] E.D. Jeong, P.H. Borse, J.S. Jang, J.S. Lee, O.S. Jung, H. Chang, J.S. Jina, M.S. Won, H.G. Kim, Hydrothermal synthesis of Cr and Fe co-doped TiO2 nanoparticle photocatalyst, J. Ceram. Proce. Res. 9 (2008) 250.

Google Scholar

[13] C.Y. Wang, C. Bottcher, D.W. Bahnemann, J.K. Dohrmann, A comparative study of nanometer sized Fe (III)-doped TiO2 photocatalysts: synthesis, characterization and activity, J. Mater. Chem. 13 (2003) 2322-2325.

DOI: 10.1039/b303716a

Google Scholar

[14] M. Asiltürka, F. Sayılkan, E.G. Arpac, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of malachite green dye under UV and vis-irradiation, J. of Photochem. Photobiol. A: Chem. 203 (2009) 64-71.

DOI: 10.1016/j.jphotochem.2008.12.021

Google Scholar

[15] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194-200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[16] S.D. Sharma, K.K. Saini, Chander Kant, C.P. Sharma, S.C. Jain, Photodegradation of dye pollutant under UV light by nano-catalyst doped titania thin films, Appl. Catal B: Environ. 84 (2008) 233-240.

DOI: 10.1016/j.apcatb.2008.04.017

Google Scholar

[17] T. Tong, J. Zhang, B. Tian, F. Chen, D. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, J. Hazard. Mater. 155 (2008) 572–579.

DOI: 10.1016/j.jhazmat.2007.11.106

Google Scholar

[18] B. Gao, A.K. Chakraborty, J.M. Yang, and W.I. Lee, Visible-light photocatalytic activity of BiOCl/Bi3O4Cl nanocomposites, Bull. Korean Chem. Soc. 31 (2010) 1941.

Google Scholar

[19] F. Sayılkan, M. Asiltürk, P. Tatar, N. Kiraz, S. Sener, E. Arpac , H. Sayılkan, Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and vis-lights, Mater. Res. Bull. 43 (2008) 127-134.

DOI: 10.1016/j.materresbull.2007.02.012

Google Scholar

[20] I. Poulios, A. Avranas, E. Rekliti, A. Zouboulis, J. Chem. Technol. Biotechnol., 75 (2000) 205.

DOI: 10.1002/(sici)1097-4660(200003)75:3<205::aid-jctb201>3.0.co;2-l

Google Scholar

[21] J. Bandara, J. Kiwi, Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange II, New J. Chem. 23 (1999) 717.

DOI: 10.1039/a902425e

Google Scholar

[22] S.H Yoon., J.H. Lee, Oxidation mechanism of As(III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism, Environ. Sci. Technol. 39 (2005) 9695.

DOI: 10.1021/es051148r

Google Scholar