Investigation of Solar Photoelectrochemical Hydrogen Generation Ability of Ferrites for Energy Production

Article Preview

Abstract:

Ferrites have been predicted to be potential material for photo catalytic and photo electrochemical (PEC) hydrogen generation under visible light photons. The article briefly reviews, as well as compares the supremacy of ferrites over titanates and sulfides with respect to their photo-electro catalytic hydrogen producing ability. It shows that though the band energetic of a material plays a vital role to induce the photo-splitting of water; but its optical structure, at the first instance is very important to utilize it to absorb the visible light photons. Among all the PEC materials, the low-band gap ferrites (Fe-d orbital) favor absorption of visible light photons; at the same time offer an advantage of being an eco-friendly material system. A specific focus is given to the single phase, nanostructure and composite forms of typical ZnFe2O4 system. Though a concise report, but also throws light on the importance and tunability of PEC properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-115

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lionel Vayssieres, On solar hydrogen nanotechnology, John Wiley & Sons (Asia) Pte Ltd, Singapore 2009.

Google Scholar

[2] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor electrode, Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[3] A. Kudo, Photo catalyst materials for water splitting, Catalysis Surveys from Asia, 7 (2003) 31-38.

Google Scholar

[4] P.H. Borse, J.S. Lee, H.G. Kim, Theoretical band energetic of Ba(M0.5Sn0.5)O3 for solar photoactive applications, J. App. Phys.,100 (2006) 124915_1-3.

DOI: 10.1063/1.2401040

Google Scholar

[5] A. Kudo, Y. Miseki, Heterogeneous photo catalytic materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-278.

DOI: 10.1039/b800489g

Google Scholar

[6] F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater. 20 (2008) 35-54.

DOI: 10.1021/cm7024203

Google Scholar

[7] J. S. Lee, Photocatalytic water splitting under visible light with particulate semiconductor photo catalysts, Catal. Surv. Asia, 9 (2005) 217-227.

DOI: 10.1007/s10563-005-9157-0

Google Scholar

[8] H.G. Kim, P.H. Borse, W. Choi, J.S. Lee, Photo catalytic nano-diodes for visible light photo catalysis, Angew. Chem. Int. Ed. 44 (2005) 4585-4589.

DOI: 10.1002/anie.200500064

Google Scholar

[9] E. Casbeer, V.K. Sharma ,and X-Z Li, Synthesis and photocatalytic activity of ferrites under visible light – a review, Separation and Purification Technology, 87 (2012) 1-14.

DOI: 10.1016/j.seppur.2011.11.034

Google Scholar

[10] H.G. Kim, P.H. Borse, J.S. Jang, O. Jung, Y.J. Suh, J.S. Lee, Fabrication of CaFe2O4/ MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis, Chem. Comm. (2009) 5889-5891.

DOI: 10.1039/b911805e

Google Scholar

[11] P.A. Mangrulkar, V. Polshettiwar, N.K. Labhsetwar, R.S. Varma and S.S. Rayalu, Nano-ferrites for Water Splitting: Unprecedented High Photocatalytic Hydrogen Production under Visible Light Nanoscale, 4 (2012) 5202-5209.

DOI: 10.1039/c2nr30819c

Google Scholar

[12] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells, Chem. Rev., 110 (2010) 6446–6473.

DOI: 10.1021/cr1002326

Google Scholar

[13] J.S. Jang, S.J. Hong, J.S. Lee, P.H. Borse, O-S. Jung, T.E. Hong, E.D. Jeong, M.S. Won, and H.G. Kim, Synthesis of Zinc Ferrite and Its Photo catalytic Application under Visible light, J. Korean. Phy. Soc., 54(2009) 204-208.

DOI: 10.3938/jkps.54.204

Google Scholar

[14] R. Dom, R. Subasri, K. Radha, P. H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation, Sol. State. Commun., 151(2011) 470–473.

DOI: 10.1016/j.ssc.2010.12.034

Google Scholar

[15] L.V. Hongjin, L. Ma, P. Zeng, D. Ke, and T. Peng, Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photo catalytic hydrogen production under visible light, J. Mater. Chem., 20,(2010) 3665-3672.

DOI: 10.1039/b919897k

Google Scholar

[16] G.Y. Zhang, Y.Q. Sun, and D.Z. Gao, Y.Y. Xu, Quasi-cube ZnFe2O4 nanocrystals: Hydrothermal synthesis and photocatalytic activity with TiO2 (Degussa P25) as nanocomposite, Mater. Res. Bull., 45(2010) 755-760.

DOI: 10.1016/j.materresbull.2010.03.025

Google Scholar

[17] S.Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, and M. Trari, Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3, Appl. Energy, 87(2010), 2230-2236.

DOI: 10.1016/j.apenergy.2009.12.016

Google Scholar

[18] C-H. Chen, Y-H Liang, W-D Zhang, ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation, J. Alloys. Compds., 501(2010) 168-172.

DOI: 10.1016/j.jallcom.2010.04.072

Google Scholar

[19] Y. Fu, X. Wang, Magnetically Separable ZnFe2O4–Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Ind.& Eng. Chem. Res., 50 (2011) 7210-7218.

DOI: 10.1021/ie200162a

Google Scholar

[20] L. Kong, Z. Jiang, T. Xiao, L. Lu, M.O. Jones, and P.P. Edwards, Chem. Commun., Exceptional visible-light-driven photocatalytic activity over BiOBr–ZnFe2O4 hetero-junctions, 47(2011), 5512-5514.

DOI: 10.1039/c1cc10446b

Google Scholar

[21] X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor based photocatalytic hydrogen generation, Chem. Rev., 110(2010) 6503–6570.

DOI: 10.1021/cr1001645

Google Scholar

[22] E. D. Jeong, P. H. Borse, J. S. Jang, J. S. Lee, C. R. Cho, J. S. Bae, S. Park, O. S. Jung, S. M. Ryu, M. S. Won, H. G. Kim, Physical and Optical Properties of Nanocrystalline Calcium Ferrite Synthesized by the Polymerized Complex Method, J. Nanosci. Nanotech. 9 (2009) 3568-3573.

DOI: 10.1166/jnn.2009.ns31

Google Scholar

[23] H. Yang, J. Yan, Z. Lu, X. Cheng and Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloys Compd. 476 (2009) 715-719.

DOI: 10.1016/j.jallcom.2008.09.104

Google Scholar

[24] P.H. Borse, J.S. Jang, S.J. Hong, J.S. Lee, J.H. Jung, T.E. Hong, C.W. Ahn, E.D. Jeong, K.S. Hong, J.H. Yoon, H.G. Kim, J. Korean Phys.Soc., Photocatalytic Hydrogen Generation from Water-methanol Mixtures Using Nanocrystalline ZnFe2O4 under Visible Light Irradiation,55 (2009) 1472-1477.

DOI: 10.3938/jkps.55.1472

Google Scholar

[25] E.D. Jeong, S. M. Yu, J.Y. Yoon, J.S. Bae, C R. Cho, K.T. Lim, R. Dom, P.H. Borse and H.G. Kim, Efficient visible light photocatalysis in cubic Sr2FeNbO6, , J. Ceram. Proc. Res.,13 (2012) 305-309.

Google Scholar

[26] R. Dom, R. Subasri, N.Y. Hebalkar, A.S. Chary, P.H. Borse, Synthesis of hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using rapid microwave irradiation method, RSC Adv., 33 (2012) 12782-12791.

DOI: 10.1039/c2ra21910g

Google Scholar

[27] M. Gratzel, Photoelectrochemical cell, Nature, 414,6861 (2001)

Google Scholar

[28] B.D. Chernomordik, H.B. Russell, U. Cvelbar, B. Jasinski, V. Kumar, T. Deutsch, M.K. Sunkara, Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting, Nanotechnology, 23 (2012)194009.

DOI: 10.1088/0957-4484/23/19/194009

Google Scholar

[29] A. Pareek, R. Dom, P.H. Borse, Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique, Int. J. Hydrogen energy, (2012) dxdoi.org/.

DOI: 10.1016/j.ijhydene.2012.10.057

Google Scholar

[30] R.F. Bunshah, Handbook of Deposition technologies for films and coatings,2nd edition, Noyes publications,1994.

Google Scholar

[31] K. Sivula, F.L. Formal, M. Gratzel, Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes, Chem Sus Chem, 4(2011) 432-449.

DOI: 10.1002/cssc.201000416

Google Scholar

[32] J.H. Kennedy, M. Anderman, Photoelectrolysis of Water at α-Fe2O3 electrodes in Acidic Solution, J. Electro. Chem. Soc, 130 (1983) 848-852.

DOI: 10.1149/1.2119833

Google Scholar

[33] A. Mao, G.Y. Han, J.H. Park, Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a gold nanorod substrate, J. Mater. Chem. 20 (2010) 2247-2250.

DOI: 10.1039/b921965j

Google Scholar

[34] P. H. Borse, H. Jun, S. H. Choi, S.J. Hong, J.S. Lee, Appl. Phys. Lett., Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light, 93 (2008) 173103_1-3.

DOI: 10.1063/1.3005557

Google Scholar

[35] S.D. Tilley, M. Cornuz, K. Sivula, M. Gratzel, Angew. Chem., Int. Ed., Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide, 49 (2010) 6405-6408.

DOI: 10.1002/anie.201003110

Google Scholar

[36] K. Sivula, R. Zboril, F.L. Formal, R. Robert, A. Weiden Kaff, J. Tucek, J. Frydrych, M. Gratzel, Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach, J. Am. Chem.Soc. 132 (2010) 7436-7444.

DOI: 10.1021/ja101564f

Google Scholar

[37] C.Y. Chang, C.H. Wang, C.J. Tseng, K.W. Cheng, L.W. Hourng, B.T. Tsai, Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production, Int. J. Hydrogen . Energy, (2012) 1-7.

DOI: 10.1016/j.ijhydene.2012.01.136

Google Scholar

[38] D.C. Boris, B.R. Harry, U. Cvelbar, J.B. Jasinski, V. Kumar, T. Deutsch, M.K. Sunkara, Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting, Nanotechnology, 23 (2012) 194009-17.

DOI: 10.1088/0957-4484/23/19/194009

Google Scholar

[39] T. Nathan. H. Hahn, J. Ye, D.W. Flaherty, A.J. Bard, C.B. Mullins, Reactive Ballistic Deposition of α-Fe2O3 Thin Films for Photoelectrochemical Water Oxidation, ACS Nano, 4 (2010) 1977-1986.

DOI: 10.1021/nn100032y

Google Scholar

[40] S.S. Yarahmadi, A.A. Tahir, B. Vaidhyanathan, K.G.U. Wijayantha, Fabrication of nanostructured α-Fe2O3 electrodes using ferrocene for solar hydrogen generation, Mater. Lett., 63 (2009) 523-526.

DOI: 10.1016/j.matlet.2008.11.011

Google Scholar

[41] A.A. Tahir, K.G.U. Wijayantha, S.S. Yarahmadi, M.M. Azhar, V.M. Kee, Nanostructured a-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation, Chem. Mater, 21 (2009) 3763-3772.

DOI: 10.1021/cm803510v

Google Scholar

[42] T.J. LaTempa, X.J. Feng , M. Paulose, C.A. Grimes, Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties, J. Phys. Chem. C, 113 ( 2009 ) 16293-16298.

DOI: 10.1021/jp904560n

Google Scholar

[43] P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Beyond photovoltaics-semiconductor nanoarchitechture for liquid junction solar cells, Chem. Rev., 110 (2010) 6664–6688.

DOI: 10.1021/cr100243p

Google Scholar

[44] Y. Lin, S. Zhou, S.W. Shechan, D. Wang, Nanonet-Based Hematite Hetero nanostructures for Efficient Solar Water Splitting, J. Am. Chem. Soc, 133 (2011) 2398-2401.

DOI: 10.1021/ja110741z

Google Scholar

[45] S.A. Majumder, S.U.M. Khan, Photoelectrolysis of water at bare and electrocatalyst covered thin film iron oxide electrode. Int. J. Hydrogen Energy, 19, (1994) 881 -887.

DOI: 10.1016/0360-3199(94)90040-x

Google Scholar

[46] A. Duret, M. Gratzel, Visible light induced water oxidation on mesoscopic a Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B, 109, (2005)17184- 17191.

DOI: 10.1021/jp044127c

Google Scholar

[47] W.B. Ingler, S.U.M. Khan, Photoresponse of spray pyrolytically synthesized magnesium doped iron (III) oxide (p- Fe2O3) thin films under solar simulated light illumination. Thin Sol. Films, 461, (2004) 301 -308.

DOI: 10.1016/j.tsf.2004.01.094

Google Scholar

[48] S.U.M. Khan, J. Akikusa, Photoelectrochemical Splitting of Water at Nanocrystalline n-Fe2O3 thin-Film Electrodes, J. Phys. Chem. B, 103,( 1999)7184-7189

DOI: 10.1021/jp990066k

Google Scholar

[49] V.R. Satsangi S. Kumari , A. P. Singh , R. Shrivastav , S. Dass, Nanostructured hematite for photoelectrochemical generation of hydrogen Int. J. Hydrogen Energy 33 (2008) 312 – 318.

DOI: 10.1016/j.ijhydene.2007.07.034

Google Scholar

[50] F.L. Souza, P.L. Kirian, A.P. Pedro E.R. Leite, Nanostructured hematite thin films produced by spin-coatingdeposition solution: Applicationinwatersplitting ,Sol. Energy Mat. Sol. Cells ,93 (2009) 362–368.

DOI: 10.1016/j.solmat.2008.11.049

Google Scholar

[51] V.M. Aroutiounian, V.M Arakelyan, G.E. Shahnazaryan, et. al., Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3- Nb2O5, Sol. Energy, 80, (2006) 1098- 1111.

DOI: 10.1016/j.solener.2005.10.005

Google Scholar

[52] V.M. Aroutiounian, V.M Arakelyan, G.E. Shahnazaryan, et. al., Photoelectrochemistry of tin doped iron oxide electrodes. Sol. Energy, 81(2007), 1369- 1376.

DOI: 10.1016/j.solener.2007.01.006

Google Scholar

[53] V.M. Aroutiounian, V.M Arakelyan, G.E. Shahnazaryan, et. al., Investigation of ceramic Fe2O3:Ta photoelectrodes for solar energy photoelectrochemical converters. International J. Hydrogen Energy, 27, (2002) 33- 38.

DOI: 10.1016/s0360-3199(01)00085-4

Google Scholar

[54] C.J. Sartoretti, M. Ulmann, B.D. Alexander. et al., Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. Chem. Phys. Lett., 376, (2003) 194- 200.

DOI: 10.1016/s0009-2614(03)00910-2

Google Scholar

[55] C.J. Sartoretti, B.D. Alexander, R. Solarska, et al., Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B, 109, (2005) 13685 -13692.

DOI: 10.1021/jp051546g

Google Scholar

[56] W.B. Ingler, J.P. Baltrus, S.U.M. Khan, Photoresponse of p-type Zn doped iron(III) oxide thin films, J. Am. Chem. Soc.,(2004), 10238-10239.

DOI: 10.1021/ja048461y

Google Scholar

[57] A. Agrawal, Y.S. Chaudhary, V.B. Satsangi, et al. The synthesis of titanium doped photosensitive hematite by a new route. Curr. Sci., 85, (2003) 101- 104.

Google Scholar

[58] J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, N. Savvides, Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si, J. Phy. Chem. C 111 (2007) 16477-16488.

DOI: 10.1021/jp074556l

Google Scholar

[59] A. Kay, I. Cesar, and M. Gratzel, New benchmark for water photooxidation by nano structured α-Fe2O3 films, J. Am. Chem. Soc. 128, (2006) 15714-15721.

DOI: 10.1021/ja064380l

Google Scholar

[60] I. Cesar, A. Kay, J.A. Gonzalez Martinez, M. Grätzel, Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping, J. Am. Chem. Soc. 128 (2006) 4582-4584.

DOI: 10.1021/ja060292p

Google Scholar

[61] N.T. Hahn, C.B. Mullins, Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped r-Fe2O3 Photoanodes, Chem. Mat., 22 (2010) 6474-6482.

DOI: 10.1021/cm1026078

Google Scholar

[62] A. K.Shwarsctein, M.N. Huda, A. Walsh, Y. Yan, G.D. Stucky, Y-S. Hu, Electrodeposited Aluminum - Doped r-Fe2O3 Photoelectrodes: Experiment and Theory, Chem. Mater. 22 (2009) 510-517.

DOI: 10.1021/cm903135j

Google Scholar

[63] Y.S.Hu, A.K. Shwarsctein, A.J. Forman, D.H.J. Park, E.W. McFarland, Pt-Doped r-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting, Chem. Mater. 20,(2008), 3803– 7.

DOI: 10.1021/cm800144q

Google Scholar

[64] K.S. Ahn, Y.Yan, M.S. Kang, J.Y. Kim, S.Shet, H.Wang, J.Turner, M.A. Jassim, CoAl2O4–Fe2O3 p-n nanocomposite electrodes for photoelectrochemical cells, App. Phy. Lett, 95 (2009) 022116-022119.

DOI: 10.1063/1.3183585

Google Scholar

[65] K. Sivula, F.L. Formal, M. Gratzel, WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach, Mater. Chem. 21 (2009) 2862-2867.

DOI: 10.1021/cm900565a

Google Scholar

[66] R. Dom, P.H. Borse, Photocatalytic and photoelectron-chemical study of ferrites for water splitting applications: a comparative study, Mat. Sci. Forum, 734 (2013) 334-348.

DOI: 10.4028/www.scientific.net/msf.734.334

Google Scholar

[67] L.G.J. Deharte, G. Blasse, Photoelectrochemical properties of ferrites with the spinel structure, Solid State Ionics, 16 (1985) 137-140.

DOI: 10.1016/0167-2738(85)90035-9

Google Scholar

[68] A.A. Tahir, K.G.U. Wijayantha, Photoelectrochemical water splitting at nanostructured ZnFe2O4 photoelectrodes, J. Photochem. Photobiol. A., 216(2010) 119-125.

DOI: 10.1016/j.jphotochem.2010.07.032

Google Scholar

[69] R. S. Gaikwad , S.Y. Chae, R. S. Mane, Cai-Gangri, S.H. Han, O.S. Joo, Large area (9x9 cm2) electrostatically sprayed nanocrystalline zincite thin films for hydrogen production application, Int. J. Hydrogen. Ene., 35 (2010) 6549-6553.

DOI: 10.1016/j.ijhydene.2010.04.018

Google Scholar

[70] J. Yin, L.J. Bie, Z.H. Yuan, Photoelectrochemical property of ZnFe2O4/TiO2 double-layered films, Mater. Res. Bull. 42 (2007) 1402-1406.

DOI: 10.1016/j.materresbull.2006.11.009

Google Scholar

[71] K.J. McDonald, K-S. Choi, Synthesis and Photoelectrochemical properties of Fe2O3/ ZnFe2O4 composite photoanodes for use in solar water oxidation, Chem. Mater., 23 (2011) 4863-4869.

DOI: 10.1021/cm202399g

Google Scholar

[72] R. Dom, G.S. Kumar, N.Y. Hebalkar, S.V. Joshi, P.H. Borse, Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying, Mater. Res. Bull.47(2012), 562- 570.

DOI: 10.1016/j.materresbull.2011.12.044

Google Scholar