Chemically Deposited Cd1-xPbxSe Thin Films for Photoelectrochemical Studies

Article Preview

Abstract:

Optimum composition of Cd1xPbxSe thin films (0.1 x 0.9) were deposited using single precursor bath containing cadmium sulfate octahydrate, lead nitrate, tartaric acid, potassium hydroxide, ammonia and sodium selenosulfate onto fluorinedoped tin oxide (FTO) glass substrates. The photoelectrochemical (PEC) cells were fabricated using Cd1xPbxSe as an active photoelectrode with sulphide/polysulphide redox couple as an electrolyte and sensitized graphite rod as a counter electrode. The various characteristics of the cells namely currentvoltage (IV), capacitancevoltage (CV) in dark, power output, builtinpotential, photoresponse, spectral response measurements were investigated. The cell performance parameters such as opencircuit voltage (Voc), shortcircuit current (Isc), series resistance (Rs), shunt resistance (Rsh), conversion efficiency (η), fill factor (FF), junction ideality factor (nd), builtinpotential (ΦB), flatband potential (Vfb) were evaluated. PEC characteristics reveal ntype semiconducting nature for Cd1xPbxSe thin films with lead composition x < 0.5, while ptype nature for remaining Cd1xPbxSe thin films. Among the various cells, the maximum PEC efficiency (η = 1.401 %) was found to Cd0.7Pb0.3Se thin films; due to its increase in opencircuit voltage (225 mV) as well as shortcircuit current (3.983 mA/cm2), decrease in resistance (Rs = 0.75 kΩ and Rsh = 331 Ω), and increase in photoelectrode absorption as compared to other thin film materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

293-306

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Wei, P. Andrew, T. Ryhanen, Electrochemical photovoltaic cells – review of recent developments, J. Chem. Technol. Biotechnol. 85 (2010) 1547–1552.

DOI: 10.1002/jctb.2468

Google Scholar

[2] D. Wei, G. Amaratunga, Photoelectrochemical cell and its applications in optoelectronics, Int. J. Electrochem. Sci. 2 (2007) 897–912.

Google Scholar

[3] G. Hodes, J. Manassen, D. Cahen, Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature 261 (1976) 403–404.

DOI: 10.1038/261403a0

Google Scholar

[4] M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye–sensitized solar cells, J. Photochem. Photobiol. A 164 (2004) 3–14.

DOI: 10.1016/j.jphotochem.2004.08.014

Google Scholar

[5] B. O'Regan, M. Gratzel, A low–cost, high efficiency solar cell based on dye–sensitized colloidal TiO2 films, Nature 353 (1991) 737–740.

DOI: 10.1038/353737a0

Google Scholar

[6] C. Chen, M. Wang, J. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc–le, J. Decoppet, J. Tsai, C. Gratzel, G. Wu, S. Zakeeruddin, M. Gratzel, Highly efficient light–harvesting ruthenium sensitizer for thin–film dye–sensitized solar cells, ACS Nano. 3 (2009) 3103–3109.

DOI: 10.1021/nn900756s

Google Scholar

[7] M. Gratzel, Photovoltaic and photoelectrochemical conversion of solar energy, Philos. Trans. Royal Soc. A 365 (2007) 993–1005.

Google Scholar

[8] L. Liu, G. Wang, Y. Li, Y. Li, J. Zhang, CdSe quantum dot–sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance, Nano Res. 4 (2011) 249–258.

DOI: 10.1007/s12274-010-0076-7

Google Scholar

[9] S. Drouard, S.G. Hickey, J.D. Riley, CdS nanoparticle–modified electrodes for photoelectrochemical studies, Chem. Commun. 1 (1999) 67–68.

DOI: 10.1039/a808572b

Google Scholar

[10] S. Ogawa, K. Hu, F.R.F. Fan, A.J. Bard. Photoelectrochemistry of films of quantum size lead sulfide particles incorporated in self–assembled monolayers on gold, J. Phys. Chem. B 101 (1997) 5707–5711.

DOI: 10.1021/jp970737j

Google Scholar

[11] M.A. Mohammed, A.M. Mousa, J.P. Ponpon, Optical and optoelectric properties of PbCdS ternary films deposited by CBD, J. Semicond. Techn. Sci. 9 (2009) 117.

DOI: 10.5573/jsts.2009.9.2.117

Google Scholar

[12] K.F. Cai, X.R. He. Hydrothermal synthesis and characterization of silver and antimony co–doped PbSe nanopowders, Mater. Letters. 60 (2006) 2461–2464.

DOI: 10.1016/j.matlet.2006.01.017

Google Scholar

[13] P.P. Hankare, S.D. Delekar, V.M. Bhuse, K.M. Garadkar, S.D. Sabane, L.V. Gavali, Synthesis & characterization of chemically deposited PbSe thin films, Mater. Chem. Phys. 82 (2003) 505–508.

DOI: 10.1016/s0254-0584(03)00375-4

Google Scholar

[14] P.P. Hankare, S.D. Delekar, M.R. Asabe, P.A. Chate, V.M. Bhuse, A.S. Khomane, K.M. Garadkar. Synthesis of cadmium selenide thin films at low temperature by chemical route & characterization, J. Phys. Chem. Solids. 67 (2006) 2506–25011.

DOI: 10.1016/j.jpcs.2006.07.006

Google Scholar

[15] P.P. Hankare, S.D. Delekar, P.A. Chate, S. D. Sabane, K.M. Garadkar, V.M. Bhuse, A novel route to synthesize Cd1xPbxSe thin films from solution phase, Semicond. Sci. Techn. 20 (2005) 257–264.

DOI: 10.1088/0268-1242/20/3/001

Google Scholar

[16] S.D. Delekar, M.K. Patil, B.V. Jadhav, K.R. Sanadi, P.P. Hankare, Synthesis and characterization of Cd0.7Pb0.3Se thin films for photoelectrochemical solar cell, Sol. Energy 84 (2010) 394–400.

DOI: 10.1016/j.solener.2009.12.009

Google Scholar

[17] S. Gorer, A. Albu–Yaron, G. Hodes, Chemical solution deposition of lead selenide films: A mechanistic and structural study, Chem. Mater. 7 (1995) 1243–1256.

DOI: 10.1021/cm00054a027

Google Scholar

[18] R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films, Mater. Chem. Phys. 65 (2000) 1–31.

DOI: 10.1016/s0254-0584(00)00217-0

Google Scholar

[19] V.L. Colvin, A.N. Goldstein, A.P. Alivisatos, Semiconductor nanocrystals covalently bound to metal surfaces with self assembled monolayers, J. Am. Chem. Soc. 114 (1992) 5221–5230.

DOI: 10.1021/ja00039a038

Google Scholar

[20] S. Drouard, S.G. Hickey, J.D. Riley. CdS nanoparticle–modified electrodes for photoelectrochemical studies, Chem. Commun. 1 (1999) 67–68.

DOI: 10.1039/a808572b

Google Scholar

[21] K. Hu, M. Brust, A.J. Bard. Characterization and surface charge measurement of self–assembled CdS nanoparticle films, Chem. Mater. 10 (1998) 1160–1165.

DOI: 10.1021/cm970757y

Google Scholar

[22] M. Miyake, H. Matsumoto, M. Nishizawa, T. Sakata, H. Mori, S. Kuwabata, H. Yoneyama, Characterization of covalently immobilized Q–CdS particles on Au(111) by scanning tunneling microscopy and tunneling spectroscopy with high reproducibility, Langmuir 13 (1997) 742–746.

DOI: 10.1021/la960702v

Google Scholar

[23] T. Nakanishi, B. Ohtani, K. Uosaki, Fabrication and characterization of CdS–Nanoparticle mono– and multilayers on a self–assembled monolayer of alkanedithiols on gold, J. Phys. Chem. B 102 (1998) 1571–1577.

DOI: 10.1021/jp973046w

Google Scholar

[24] D. Liu, P. Kamat. Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films, J. Phys. Chem. 97 (1993) 10769–10773.

DOI: 10.1021/j100143a041

Google Scholar

[25] R.D. Gould, B.B. Ismail, The formation of Schottky barriers on evaporated cadmium telluride thin films using aluminium electrodes, J. Mater. Sci. Lett. 11 (1992) 313–314.

DOI: 10.1007/bf00729166

Google Scholar

[26] H. Gerischer, in Topics in Applied Physics, in: B. O. Seraphin, Ed., Solar Energy Conversion, vol. 31, Springer–Verlag, Berlin, 1979.

Google Scholar

[27] G.S. Shahanea, K.M. Garadkar, L.P. Deshmukh, Structural, optical and electrical properties of indium doped CdS0.9Se0.1 thin films, Int. J. Electron. 51 (1997) 246–251.

DOI: 10.1016/s0254-0584(97)80313-6

Google Scholar

[28] A.M. Al–Dhafiri, A.A.I. Al–Bassam, The mechanism of the oxygen annealing in gold surface barriers on CdSxSe1−x devices, Sol. Eng. Mater. Sol. Cells, 33 (1994) 177–182.

DOI: 10.1016/0927-0248(94)90206-2

Google Scholar

[29] J.F. McCann, R.C. Kainthla, M. Skyllas–Kazacos. Chemical deposition of Cd1–xHgxS thin film electrodes for liquid–junction solar cells, Sol. Ener. Mater. 9 (1983) 247–251.

DOI: 10.1016/0165-1633(83)90047-3

Google Scholar

[30] A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible–light–responsive BiVO4 fine particles prepared in an aqueous acetic acid solution, J. Mater. Chem. 20 (2010) 7536–7542.

DOI: 10.1039/c0jm00961j

Google Scholar

[31] M.A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2, J. Appl. Phys. 48 (1977) 1914–1920.

DOI: 10.1063/1.323948

Google Scholar

[32] D.S. Ginley, M.A. Butler, The photoelectrolysis of water using iron titanate anodes, J. Appl. Phys. 48 (1977) 2019–2021.

DOI: 10.1063/1.323911

Google Scholar

[33] P.K. Mahapatra, A.R. Dubey, Photoelectrochemical behaviour of mixed polycrystalline n–type CdS–CdSe electrodes, Sol. Ener. Mater. Sol. Cells 32 (1994) 29–35.

DOI: 10.1016/0927-0248(94)90253-4

Google Scholar

[34] R.N. Noufi, P.A. Kohl, A.J. Bard, Semiconductor electrodes, XV. Photoelectronche– mical cells with mixed polycrystalline n–type CdS–CdSe electrodes, J. Electrochem. Soc. 125 (1978) 375–379.

DOI: 10.1149/1.2131453

Google Scholar

[35] G. Keiser. Optical Fiber Communications 3rd Ed., McGraw–Hill, McGraw–Hill Inc., New York, 2000.

Google Scholar

[36] F.C. Allard, Fiber Optics Handbook: For Engineers and Scientists, McGraw–Hill Inc., New York, 1990.

Google Scholar