[1]
K.E. Jasim, Dye sensitized solar cells – working principle, challenges and opportunities, solar cells - dye-sensitized devices, Intechopen Europe, 2011, pp.171-204.
DOI: 10.5772/19749
Google Scholar
[2]
N.S. Lewis, Towards cost-effective solar energy use, Science. 315(2007) 798-801.
Google Scholar
[3]
A.E. Becquerel, "Mčmoire sur les effets électriques produits sous l'influence des rayons solaires, C. R. Acad. Sci. Paris. 9 (1839) 561-567.
Google Scholar
[4]
C. J. Chen, Physics of solar energy, John wiley & Sons Inc, New Jersey, 2011.
Google Scholar
[5]
S.Tetsuo, Nanostructured materials for solar energy conversion, Elsevier online, 2006.
Google Scholar
[6]
A. Hagfeldt, , G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chem. Rev., 11,(2010) 6595-6663.
DOI: 10.1021/cr900356p
Google Scholar
[7]
H. Desilvestro, 4th International conference on the industrialization of DSSC, Colorado Springs, 2010.
Google Scholar
[8]
X.D. Gao, X.M. Li, X.Y. Gan, Enhancing the light harvesting capacity of the photo anode films in dye- sensitized solar cells, Intechopen Europe, 2013, pp.169-202.
Google Scholar
[9]
X. Dou, D. Sabba, N. Mathews, L.H. Wong, Y.M. Lam, S. Mhaisalkar, Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode materials for efficient dye-sensitized solar cells, Chem. Mater. 23 (2011) 3938-3945.
DOI: 10.1021/cm201366z
Google Scholar
[10]
Z. Tebby, T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, C. Labrugere, L. Hirsch, Low temperature UV processing of nanoporous SnO2 layers for dye-sensitized solar cells, Appl. Mater. Interfaces. 3 (2011) 1485- 1491.
DOI: 10.1021/am200049g
Google Scholar
[11]
M. Gratzel, Dye sensitized soalr cells, J. Photochem. Photobiol. C. 2 (2003) 145-153.
Google Scholar
[12]
M.D. Nazeeruddin, E. Baranoff, M. Gratzel, Dye sensitized solar cell- A brief overview, Sol. Energy. 85 (2011) 1172-1178.
DOI: 10.1016/j.solener.2011.01.018
Google Scholar
[13]
Y. Jioa, F. Zhang, S. Meng, Dye sensitized solar cells Principles and new design, Intechopen Europe, 2011, pp.131-148.
Google Scholar
[14]
M. K. Nazerruddin, A. Kay, I. Ridicio, R. H. Baker, E. Mueller, P Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115 (1993) 6382-6390.
Google Scholar
[15]
G. P. Smestad, M. Gratzel, Education and solar conversion: Demonstrating electron transfer , Sol. Energy. Mater. Sol. Cells, 55 (1998) 157-178.
Google Scholar
[16]
Q. Zheng, H. Kang, J. J. Yun, J. Y. Lee, J. H. Park, S. Baik, Hierarchical construction of self standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells, ACS Nano. 6 (2011) 5088-5093.
DOI: 10.1021/nn201169u
Google Scholar
[17]
H. Y. Chen, D. B. Kuang, C. Y. J. Su, Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells, J. Mater. Chem. 22 (2012) 15475-15489.
DOI: 10.1039/c2jm32402d
Google Scholar
[18]
Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Z. Cao, Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells, Angew. Chem. 47 (2008) 2402-2406.
DOI: 10.1002/anie.200704919
Google Scholar
[19]
Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency, Adv. Mater. 24 (2012) 1046-1049.
DOI: 10.1002/adma.201104626
Google Scholar
[20]
S. Gubbala, V. Chakrapani, V. Kumar, M. K. Sunkara, Band edge engineered hybrid structures for dye sensitized solar cells based on SnO2 nanowires, Adv. Funct. Mater. 18 (2008) 2411-2418.
DOI: 10.1002/adfm.200800099
Google Scholar
[21]
J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, TiO2 coated multilayered SnO2 hollow microspheres for dye sensitized solar cells, Adv. Mater. 21 (2009) 3663-3667.
DOI: 10.1002/adma.200900525
Google Scholar
[22]
C. He, B. Lei, Y. Wang, C. Su, Y. Fang, D. Kuang, Sonochemical preparation of hierarchical ZnO hollow sphere for efficient dye sensitized solar cell, Chem. Eur. J. 16 (2012) 8757-8761.
DOI: 10.1002/chem.201000264
Google Scholar
[23]
H. Zhang, Y. Han, X. Liu, P. Liu, H. Yu, S. Zhang, X. Yao, H. Zhao, Anatase TiO2 microspheres with exposed mirror like plane facets for high performance dye sensitized solar cells, Chem. Commun. 46 (2010) 8395-8397.
DOI: 10.1039/c0cc03196h
Google Scholar
[24]
Y. Wang, W. Yang, W. Shi, Preparation and characterization of anatase TiO2 nanosheets based microspheres for dye sensitized solar cells, Ind. Eng. Chem. Res. 50 (2011) 11982-11987.
DOI: 10.1021/ie2016202
Google Scholar
[25]
M. Liu, J. Yang, S. Feng, H. Zhu, J. Zhang, G. Li, J. Peng, Hierarchical double layered SnO2 film as a photoanode for dye sensitized solar cells, New. J. Chem. 37 (2013) 1002-1008.
DOI: 10.1039/c3nj40962g
Google Scholar
[26]
Y. L. Wang, M. Guo, M. Zhang, X. D. Wang, Hydrothermal preparation and photo electrochemical performance of size controlled SnO2 nanorod arrays, Crys. Engg. Comm. 12 (2012) 4024-4027.
DOI: 10.1039/c0ce00201a
Google Scholar
[27]
T. T. Duong , H. J. Choi, Q. J. He, A. T. Le, S. G. Yoon, Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by Nanocluster deposition, J. Alloys. Comp 561 (2013) 206–210.
DOI: 10.1016/j.jallcom.2013.01.188
Google Scholar
[28]
S. Chappel, S. G. Chen, A. Zaban, TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells, Langmuir, 18 (2002) 3336-3342.
DOI: 10.1021/la015536s
Google Scholar
[29]
S. Gubbala, H. B. Russell, H. Shah, B. Deb, J. Jasinski, H. Rypkema, M. K. Sunkara, Surface properties of SnO2 nanowires for enhanced performance with dye sensitized solar cells, Energy. Environ. Sci. 2 (2009) 1302-1309.
DOI: 10.1039/b910174h
Google Scholar
[30]
C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie, A facile method to prepare SnO2 nanotubes for use in efficient SnO2 –TiO2 core shell dye sensitized solar cells, Nanoscale 4 (2012) 3475-3481.
DOI: 10.1039/c2nr30349c
Google Scholar
[31]
H. Song, K. H. Lee, H. Jeong, S. H. Um, G. S. Han, H. S. Jung, G. Y. Jung, A simple self assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells, Nanoscale. 5 (2013) 1188 - 1194.
DOI: 10.1039/c2nr33114d
Google Scholar
[32]
G. Shang, J. Wu, S. Tang, L. Lu, X. Zhang, Enhancement in photovoltaic performance of dye sensitized solar cells by modified Tin oxide nanorods with titanium oxide layer, J. Phys. Chem. C. 117 (2013) 4345- 4350.
DOI: 10.1021/jp309193n
Google Scholar
[33]
Y. F. Wang, K. N. Li, W. Q. Wu, Y. F. Xu, H. Y. Chen, C. Y. Su, D. B. Kuang, Fabrication of a double layered photoanode consisting of SnO2 nanofibers and nanoparticles for efficient dye sensitized solar cells, RSC Adv., 3 (2013) 13804-13810.
DOI: 10.1039/c3ra41839a
Google Scholar
[34]
Q. F. Zhang, T. P. Chou, B. R. Russo, S. A. Jenekhe, G. Z. Cao, Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells, Angew. Chem. Int. Ed. 47 (2008) 2402-2406.
DOI: 10.1002/anie.200704919
Google Scholar
[35]
B. Liu, E. S. Aydil, Growth of Oriented Single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc, 131 (2009) 3985-3990.
DOI: 10.1021/ja8078972
Google Scholar
[36]
K. Sayama, H. Sugihara, H. Arakawa, Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye, Chem. Mater. 10 (1998) 3825.
DOI: 10.1021/cm980111l
Google Scholar
[37]
E. Ramasamy, J. Lee, Ordered mesoporous SnO2 based photoanodes for high performance dye sensitized solar cells, J. Phys. Chem. C. 114 (2010) 22032- 22037.
DOI: 10.1021/jp1074797
Google Scholar
[38]
J. Chen, C. Li, Feng. Xu, Y. Zhou, W. Lei, L. Sun, Y. Zhang, Hollow SnO2 microspheres for high efficiency bilayered dye sensitized solar cells, RSC Adv. 2 (2012) 7384- 7387.
DOI: 10.1039/c2ra20909h
Google Scholar
[39]
H. Wang, B. Li, J. Gao, M. Tang, H. Feng, J. Li, L. Guo, SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells, Crys. Engg. Comm. 14 (2012) 5177- 5181.
DOI: 10.1039/c2ce06531b
Google Scholar
[40]
G. Shang, J. Wu, M. Huang, J. Lin, Z. Lan, Y. Huang, L. Fan, Facile synthesis of mesoporous Tin oxide spheres and their applications in dye sensitized solar cells, J. Phys. Chem. C. 116 (2012) 20140- 20145.
DOI: 10.1021/jp304185q
Google Scholar
[41]
C. Ma, J. Lu, W. Shao, F. Gu, S. Jing, Efficient light scattering from nanochains encapsulated in SnO2 hollow spheres, Int. J. Electrochem. Sci. 8 (2013) 3580-3588.
Google Scholar
[42]
X. Dou, N. Mathews, Q. Wang, S. S. Pramana, Y. M. Lam, S. Mhaisalkar, Novel Zn-Sn-O nanocatus with excellent transport properties as photoanode materials for high performance dye sensitized solar cells, Nanoscale. 3 (2011) 4640-4646.
DOI: 10.1039/c1nr11083g
Google Scholar
[43]
Z. Li, Y. Zhou, T. Yu, J. Liu, Z. Zou, Unique Zn-doped SnO2 nanoechinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cells, Crys. Engg. Comm. 14 (2012) 6462- 6468.
DOI: 10.1039/c2ce25954k
Google Scholar
[44]
Y. F. Wang, K. N. Li, C. L. Liang, Y. F. Hou, C. Y. Su, D. B. Kuang, Synthesis of hierarchical SnO2 octahedra with tailorable size and application in dye sensitized solar cells with enhanced power conversion efficieny, J. Mater. Chem. 22 (2012) 21495- 21501.
DOI: 10.1039/c2jm33633b
Google Scholar
[45]
A. Birkel, Y. G. Lee, D. Koll, X. V. Meerbeek, S. Frank, M. J. Choi, Y. S. Kang, K. Char, W. Tremel, Highly efficient and stable dye sensitized solar cells based on SnO2 nanocrystals prepared by microwave assisted synthesis, Energy. Environ. Sci. 5 (2012) 5392- 5400.
DOI: 10.1039/c1ee02115j
Google Scholar
[46]
C. F. Shi, W. Jing, Y. Z. Hao, D. Y. Qin, SnO2 nanosheet as a photoanode interfacial layer for dye sensitized solar cells, Optoelectron. Lett. 7 (2011) 321-324.
DOI: 10.1007/s11801-011-1025-8
Google Scholar