Recent Advances in SnO2 Based Photo Anode Materials for Third Generation Photovoltaics

Article Preview

Abstract:

Dye Sensitized Solar Cell (DSSC) based on metal oxide photo anode is of greater interest at the present scenario. The light harvesting capability of the photo anode is the most crucial factor in determining the efficiency of DSSC. Thus to decide on suitable photo anode to attain greater efficiency is critical confront. The wide band gap (3.6eV) and higher electron mobility (me ~ 250 cm2 V-1 S‑1) of SnO2 put together a promising material when compared to other photo electrode materials . Besides, its low sensitivity towards UV makes them more stable for a long time. This review will focus on recent progress in development of SnO2 and hybrid SnO2 based photo anode material and its allied key issues based on articles published in the last five years. A short introduction about the current energy scenario, DSSC principle and working will be presented followed by a brief description about the importance of photo anode in DSSC. Subsequently a complete review on SnO2 and hybrid SnO2 photo anode materials will be explained together with the recent year reports considering all the challenges and perspectives related to DSSC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-38

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.E. Jasim, Dye sensitized solar cells – working principle, challenges and opportunities, solar cells - dye-sensitized devices, Intechopen Europe, 2011, pp.171-204.

DOI: 10.5772/19749

Google Scholar

[2] N.S. Lewis, Towards cost-effective solar energy use, Science. 315(2007) 798-801.

Google Scholar

[3] A.E. Becquerel, "Mčmoire sur les effets électriques produits sous l'influence des rayons solaires, C. R. Acad. Sci. Paris. 9 (1839) 561-567.

Google Scholar

[4] C. J. Chen, Physics of solar energy, John wiley & Sons Inc, New Jersey, 2011.

Google Scholar

[5] S.Tetsuo, Nanostructured materials for solar energy conversion, Elsevier online, 2006.

Google Scholar

[6] A. Hagfeldt, , G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chem. Rev., 11,(2010) 6595-6663.

DOI: 10.1021/cr900356p

Google Scholar

[7] H. Desilvestro, 4th International conference on the industrialization of DSSC, Colorado Springs, 2010.

Google Scholar

[8] X.D. Gao, X.M. Li, X.Y. Gan, Enhancing the light harvesting capacity of the photo anode films in dye- sensitized solar cells, Intechopen Europe, 2013, pp.169-202.

Google Scholar

[9] X. Dou, D. Sabba, N. Mathews, L.H. Wong, Y.M. Lam, S. Mhaisalkar, Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode materials for efficient dye-sensitized solar cells, Chem. Mater. 23 (2011) 3938-3945.

DOI: 10.1021/cm201366z

Google Scholar

[10] Z. Tebby, T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, C. Labrugere, L. Hirsch, Low temperature UV processing of nanoporous SnO2 layers for dye-sensitized solar cells, Appl. Mater. Interfaces. 3 (2011) 1485- 1491.

DOI: 10.1021/am200049g

Google Scholar

[11] M. Gratzel, Dye sensitized soalr cells, J. Photochem. Photobiol. C. 2 (2003) 145-153.

Google Scholar

[12] M.D. Nazeeruddin, E. Baranoff, M. Gratzel, Dye sensitized solar cell- A brief overview, Sol. Energy. 85 (2011) 1172-1178.

DOI: 10.1016/j.solener.2011.01.018

Google Scholar

[13] Y. Jioa, F. Zhang, S. Meng, Dye sensitized solar cells Principles and new design, Intechopen Europe, 2011, pp.131-148.

Google Scholar

[14] M. K. Nazerruddin, A. Kay, I. Ridicio, R. H. Baker, E. Mueller, P Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115 (1993) 6382-6390.

Google Scholar

[15] G. P. Smestad, M. Gratzel, Education and solar conversion: Demonstrating electron transfer , Sol. Energy. Mater. Sol. Cells, 55 (1998) 157-178.

Google Scholar

[16] Q. Zheng, H. Kang, J. J. Yun, J. Y. Lee, J. H. Park, S. Baik, Hierarchical construction of self standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells, ACS Nano. 6 (2011) 5088-5093.

DOI: 10.1021/nn201169u

Google Scholar

[17] H. Y. Chen, D. B. Kuang, C. Y. J. Su, Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells, J. Mater. Chem. 22 (2012) 15475-15489.

DOI: 10.1039/c2jm32402d

Google Scholar

[18] Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Z. Cao, Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells, Angew. Chem. 47 (2008) 2402-2406.

DOI: 10.1002/anie.200704919

Google Scholar

[19] Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency, Adv. Mater. 24 (2012) 1046-1049.

DOI: 10.1002/adma.201104626

Google Scholar

[20] S. Gubbala, V. Chakrapani, V. Kumar, M. K. Sunkara, Band edge engineered hybrid structures for dye sensitized solar cells based on SnO2 nanowires, Adv. Funct. Mater. 18 (2008) 2411-2418.

DOI: 10.1002/adfm.200800099

Google Scholar

[21] J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, TiO2 coated multilayered SnO2 hollow microspheres for dye sensitized solar cells, Adv. Mater. 21 (2009) 3663-3667.

DOI: 10.1002/adma.200900525

Google Scholar

[22] C. He, B. Lei, Y. Wang, C. Su, Y. Fang, D. Kuang, Sonochemical preparation of hierarchical ZnO hollow sphere for efficient dye sensitized solar cell, Chem. Eur. J. 16 (2012) 8757-8761.

DOI: 10.1002/chem.201000264

Google Scholar

[23] H. Zhang, Y. Han, X. Liu, P. Liu, H. Yu, S. Zhang, X. Yao, H. Zhao, Anatase TiO2 microspheres with exposed mirror like plane facets for high performance dye sensitized solar cells, Chem. Commun. 46 (2010) 8395-8397.

DOI: 10.1039/c0cc03196h

Google Scholar

[24] Y. Wang, W. Yang, W. Shi, Preparation and characterization of anatase TiO2 nanosheets based microspheres for dye sensitized solar cells, Ind. Eng. Chem. Res. 50 (2011) 11982-11987.

DOI: 10.1021/ie2016202

Google Scholar

[25] M. Liu, J. Yang, S. Feng, H. Zhu, J. Zhang, G. Li, J. Peng, Hierarchical double layered SnO2 film as a photoanode for dye sensitized solar cells, New. J. Chem. 37 (2013) 1002-1008.

DOI: 10.1039/c3nj40962g

Google Scholar

[26] Y. L. Wang, M. Guo, M. Zhang, X. D. Wang, Hydrothermal preparation and photo electrochemical performance of size controlled SnO2 nanorod arrays, Crys. Engg. Comm. 12 (2012) 4024-4027.

DOI: 10.1039/c0ce00201a

Google Scholar

[27] T. T. Duong , H. J. Choi, Q. J. He, A. T. Le, S. G. Yoon, Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by Nanocluster deposition, J. Alloys. Comp 561 (2013) 206–210.

DOI: 10.1016/j.jallcom.2013.01.188

Google Scholar

[28] S. Chappel, S. G. Chen, A. Zaban, TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells, Langmuir, 18 (2002) 3336-3342.

DOI: 10.1021/la015536s

Google Scholar

[29] S. Gubbala, H. B. Russell, H. Shah, B. Deb, J. Jasinski, H. Rypkema, M. K. Sunkara, Surface properties of SnO2 nanowires for enhanced performance with dye sensitized solar cells, Energy. Environ. Sci. 2 (2009) 1302-1309.

DOI: 10.1039/b910174h

Google Scholar

[30] C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie, A facile method to prepare SnO2 nanotubes for use in efficient SnO2 –TiO2 core shell dye sensitized solar cells, Nanoscale 4 (2012) 3475-3481.

DOI: 10.1039/c2nr30349c

Google Scholar

[31] H. Song, K. H. Lee, H. Jeong, S. H. Um, G. S. Han, H. S. Jung, G. Y. Jung, A simple self assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells, Nanoscale. 5 (2013) 1188 - 1194.

DOI: 10.1039/c2nr33114d

Google Scholar

[32] G. Shang, J. Wu, S. Tang, L. Lu, X. Zhang, Enhancement in photovoltaic performance of dye sensitized solar cells by modified Tin oxide nanorods with titanium oxide layer, J. Phys. Chem. C. 117 (2013) 4345- 4350.

DOI: 10.1021/jp309193n

Google Scholar

[33] Y. F. Wang, K. N. Li, W. Q. Wu, Y. F. Xu, H. Y. Chen, C. Y. Su, D. B. Kuang, Fabrication of a double layered photoanode consisting of SnO2 nanofibers and nanoparticles for efficient dye sensitized solar cells, RSC Adv., 3 (2013) 13804-13810.

DOI: 10.1039/c3ra41839a

Google Scholar

[34] Q. F. Zhang, T. P. Chou, B. R. Russo, S. A. Jenekhe, G. Z. Cao, Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells, Angew. Chem. Int. Ed. 47 (2008) 2402-2406.

DOI: 10.1002/anie.200704919

Google Scholar

[35] B. Liu, E. S. Aydil, Growth of Oriented Single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc, 131 (2009) 3985-3990.

DOI: 10.1021/ja8078972

Google Scholar

[36] K. Sayama, H. Sugihara, H. Arakawa, Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye, Chem. Mater. 10 (1998) 3825.

DOI: 10.1021/cm980111l

Google Scholar

[37] E. Ramasamy, J. Lee, Ordered mesoporous SnO2 based photoanodes for high performance dye sensitized solar cells, J. Phys. Chem. C. 114 (2010) 22032- 22037.

DOI: 10.1021/jp1074797

Google Scholar

[38] J. Chen, C. Li, Feng. Xu, Y. Zhou, W. Lei, L. Sun, Y. Zhang, Hollow SnO2 microspheres for high efficiency bilayered dye sensitized solar cells, RSC Adv. 2 (2012) 7384- 7387.

DOI: 10.1039/c2ra20909h

Google Scholar

[39] H. Wang, B. Li, J. Gao, M. Tang, H. Feng, J. Li, L. Guo, SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells, Crys. Engg. Comm. 14 (2012) 5177- 5181.

DOI: 10.1039/c2ce06531b

Google Scholar

[40] G. Shang, J. Wu, M. Huang, J. Lin, Z. Lan, Y. Huang, L. Fan, Facile synthesis of mesoporous Tin oxide spheres and their applications in dye sensitized solar cells, J. Phys. Chem. C. 116 (2012) 20140- 20145.

DOI: 10.1021/jp304185q

Google Scholar

[41] C. Ma, J. Lu, W. Shao, F. Gu, S. Jing, Efficient light scattering from nanochains encapsulated in SnO2 hollow spheres, Int. J. Electrochem. Sci. 8 (2013) 3580-3588.

Google Scholar

[42] X. Dou, N. Mathews, Q. Wang, S. S. Pramana, Y. M. Lam, S. Mhaisalkar, Novel Zn-Sn-O nanocatus with excellent transport properties as photoanode materials for high performance dye sensitized solar cells, Nanoscale. 3 (2011) 4640-4646.

DOI: 10.1039/c1nr11083g

Google Scholar

[43] Z. Li, Y. Zhou, T. Yu, J. Liu, Z. Zou, Unique Zn-doped SnO2 nanoechinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cells, Crys. Engg. Comm. 14 (2012) 6462- 6468.

DOI: 10.1039/c2ce25954k

Google Scholar

[44] Y. F. Wang, K. N. Li, C. L. Liang, Y. F. Hou, C. Y. Su, D. B. Kuang, Synthesis of hierarchical SnO2 octahedra with tailorable size and application in dye sensitized solar cells with enhanced power conversion efficieny, J. Mater. Chem. 22 (2012) 21495- 21501.

DOI: 10.1039/c2jm33633b

Google Scholar

[45] A. Birkel, Y. G. Lee, D. Koll, X. V. Meerbeek, S. Frank, M. J. Choi, Y. S. Kang, K. Char, W. Tremel, Highly efficient and stable dye sensitized solar cells based on SnO2 nanocrystals prepared by microwave assisted synthesis, Energy. Environ. Sci. 5 (2012) 5392- 5400.

DOI: 10.1039/c1ee02115j

Google Scholar

[46] C. F. Shi, W. Jing, Y. Z. Hao, D. Y. Qin, SnO2 nanosheet as a photoanode interfacial layer for dye sensitized solar cells, Optoelectron. Lett. 7 (2011) 321-324.

DOI: 10.1007/s11801-011-1025-8

Google Scholar