ZnO Nanoforest Based New Generation Dye Sensitized Solar Cells

Article Preview

Abstract:

ZnO is gaining importance in the electronics industry because of its availability of large sized single crystals, strong luminescence demonstrated in optically pumped lasers and the possibility of gaining control over its electrical conductivity. Dye Sensitized Solar Cells (DSSCs) is a photoelectrochemical system that incorporates a porous structured wide-bandgap oxide semiconductor (TiO2 or ZnO) film as the photosensitized anode that offers increased surface area for dye molecule adsorption. ZnO Nanoforest is comprised of high density, branched ZnO nanowire photoanodes. The overall light-conversion efficiency of the branched ZnO nanowire DSSCs is almost 5 times higher than the efficiency of DSSCs constructed by upstanding ZnO nanowires. The efficiency increase is due to increased surface area for higher dye loading and light harvesting, and also due to reduced charge recombination phenomena by providing direct conduction pathways along the crystalline ZnO nanoforest.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-89

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Hara, H. Arakawa, Dye-Sensitized Solar Cells, in: A. Luque, S. Hegedus (Eds.), Handbook of Photovoltaic Science and Engineering, John Wiley & Sons ltd., New York, (2003) 663-700.

DOI: 10.1002/0470014008.ch15

Google Scholar

[2] Md. K. Nazeeruddin, A.Kay, I.Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of Light to Electricity by cis-X2Bis (2,2' bipyridl- 4,4' dicarboxylate) Ruthenium (II) Charge-Transfer Sensitzers (X= Cl- , Br- , I- , CN- and SCN-) on Nanocrystalline TiO2 Electrodes, J. Am. Chem. Soc. 115 (1993) 6382-6390.

DOI: 10.1021/ja00067a063

Google Scholar

[3] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[4] Md. K. Nazeeruddin, P. Pèchy, M. Grätzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex, Chem. Commun. (1997) 1705-1706.

DOI: 10.1039/a703277c

Google Scholar

[5] Md. K. Nazeeruddin, P. Pèchy, T. Renouard, Shaikh M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, Le Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Grätzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, J. Am. Chem. Soc. 123 (2001) 1613-1624.

DOI: 10.1021/ja003299u

Google Scholar

[6] l earning from nature: dye sensitized solar cells: By Kathy Li Dessau 2nd November 2010, Information on: http://www.solarnovus.com

Google Scholar

[7] A. Janotti, C.G. Van de Walle, Fundamentals of Zinc Oxide as a Semi-Conductor, Rep. prog. Phys. 72 (2009) 1-29

Google Scholar

[8] K.D. Benkstein, N. Kopidakis, J.V. Lagemaat and A.J. Frank, Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells, J. Phys. Chem. B, 107 (31) (2003) 7759–7767.

DOI: 10.1021/jp022681l

Google Scholar

[9] M. Grätzel, Perspectives for dye-sensitized nanocrystalline solar cells, Prog. Photovolt. Res. Appl., 8 (1) (2000) 27-38.

Google Scholar

[10] A. P. Uthirakumar, Fabrication of ZnO Based Dye Sensitized Solar Cells, in: L.A. Kosyachenko (Eds.), Solar Cells-Dye-Sensitized Devices, InTech, Europe ( 2011) 435- 456.

DOI: 10.5772/19459

Google Scholar

[11] E. A. Meulenkamp, Synthesis and growth of ZnO nanoparticles, J. Phys. Chem. B., 102 (1998) 5566-5572.

Google Scholar

[12] B. Postels, A. Kasprzak, T. Buergel, A. Bakin, E. Schlenker, H.H. Wehmann, A. Waag, Dye-sSensitized solar cells on the basis of ZnO nanorods, J. Kor. Phys. Soc., 53 (2008) 115- 118.

DOI: 10.3938/jkps.53.115

Google Scholar

[13] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nat. Mat., 4 (2005) 455-459.

DOI: 10.1038/nmat1387

Google Scholar

[14] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO Nanostructures for dye-sensitized solar cells, Adv. Mater., 21 (2009) 4087-4108.

DOI: 10.1002/adma.200803827

Google Scholar

[15] C. Y. Jiang, X. W. Sun, G.Q. Lo, D. L. Kwong, Improved Dye-Sensitized Solar Cells with a ZnO-nanoflower Photoanode, Appl. Phys. Lett., 90 (2007) 263501.

DOI: 10.1063/1.2751588

Google Scholar

[16] S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell, Nano Lett., 11 (2011) 666-671.

DOI: 10.1021/nl1037962

Google Scholar

[17] J. B. Baxter, E. S. Aydil, Nanowire-based dye-sensitized solar cells, Appl. Phys. Lett., 86 (2005) 053114.

DOI: 10.1063/1.1861510

Google Scholar

[18] A. B. F. Martinson, J. E. McGarrah, Md. O. K. Parpia, J. T. Hupp, Dynamics of charge transport and recombination in ZnO nanorod array Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 8 (2006) 4655-4659.

DOI: 10.1039/b610566a

Google Scholar

[19] H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, Electron Injection Efficiency from Excited N3 into Nanocrystalline ZnO Films: Effect of (N3-Zn2+) Aggregate Formation, J. Phys. Chem. B, 107 (2003) 2570-2574.

DOI: 10.1021/jp0220027

Google Scholar

[20] K. Westermark, H. Rensmo, H. Siegbahn, K. Keis, A. Hagfeldt, L. Ojamae, P. Persson, PES Studies of Ru(dcbpyH2)2(NCS)2 Adsorption on Nanostructured ZnO for Solar Cell Applications, J. Phys. Chem. B, 106 (2002) 10102-10107.

DOI: 10.1021/jp0142177

Google Scholar

[21] T. P. Chou, Q. F. Zhang, G. Z. Cao, Effect of Dye Loading Conditions on the Energy Conversion Efficiency of ZnO and TiO2 Dye-Sensitized Solar Cells, J. Phys. Chem. C, 111 (2007) 18804-18811 .

DOI: 10.1021/jp076724f

Google Scholar

[22] N. A. Anderson, X. Ai, T. Q. Lian, Electron Injection Dynamics from Ru Polypyridyl complexes to ZnO Nanocrystalline Thin Films, J. Phys. Chem. B, 107 (2003) 14414-14421.

DOI: 10.1021/jp036201h

Google Scholar

[23] J. B. Asbury, E. Hao, Y. Q. Wang, H. N. Ghosh, T. Q. Lian, Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films, J. Phys. Chem. B, 105 (2001) 4545-4557.

DOI: 10.1021/jp003485m

Google Scholar

[24] J. B. Asbury, N. A. Anderson, E. C. Hao, X. Ai, T. Q. Lian, Parameters Affecting Electron Injection Dynamics from Ruthenium Dyes to Titanium Dioxide Nanocrystalline Thin Film, J. Phys. Chem. B, 107 (2003) 7376-7386.

DOI: 10.1021/jp034148r

Google Scholar

[25] D. Kuciauskas, J. E. Monat, R. Villahermosa, H. B. Gray, N. S. Lewis, J. K. McCusker, Transient Absorption Spectroscopy of Ruthenium and Osmium Polypyridyl complexed adsorbed onto Nanocrystalline TiO2 photoelectrodes, J. Phys. Chem. B, 106 (2002) 9347- 9358.

DOI: 10.1021/jp014589f

Google Scholar

[26] G. Benko, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev, V. Sundstrom, Photoinduced Ultrafast Dye-to-Semiconductor Electron Injection from Nonthermalized and Thermalized Donor States, J. Am. Chem. Soc., 124 (2002) 489-493.

DOI: 10.1021/ja016561n

Google Scholar

[27] J. B. Asbury, Y. Q. Wang, T. Q. Lian, Multiple-Exponential Electron Injection in Ru(dcbpy)2(SCN)2 Sensitized ZnO Nanocrystalline thin films, J. Phys. Chem. B, 103 (1999) 6643-6647.

DOI: 10.1021/jp991625q

Google Scholar

[28] N. A. Anderson, T. Lian, Ultrafast Electron Injection from Metal Polypyridyl Complexes to Metal-Oxide Nanocrystalline thin films, Coord. Chem. Rev., 248 (2004) 1231-1246.

DOI: 10.1016/j.ccr.2004.03.029

Google Scholar

[29] B. Enright, D. Fitzmaurice, Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film, J. Phys. Chem., 100 (1996) 1027-1035.

DOI: 10.1021/jp951142w

Google Scholar

[30] A. Furube, R. Katoh, K. Hara, S. Murata, H. Arakawa, M. Tachiya, Ultrafast Stepwise Electron Injection from Photoexcited Ru-Complex into Nanocrystalline ZnO Film via Intermediates at the surface, J. Phys. Chem. B, 107 (2003) 4162-4166.

DOI: 10.1021/jp034039c

Google Scholar