Plasmon Resonance Enhanced Zinc Oxide Photoelectrodes for Improvement in Performance of Dye Sensitized Solar Cells

Article Preview

Abstract:

Nanocomposites of vertically aligned zinc oxide (ZnO) nanorod arrays incorporated with gold (Au) nanoparticles have been used as photoelectrodes to fabricate dye sensitized solar cells (DSSCs). Due to the surface plasmon resonance of the Au nanoparticles, the nanocomposite photoelectrodes demonstrate enhancement in the visible light absorption resulting in ~8% higher photocurrent compared to ZnO photoelectrode based DSSCs fabricated without any Au nanoparticles. In addition to the higher optical absorption due to the gold nanoparticles, a Schottky barrier forms at the ZnO/Au interface preventing the back electron transfer from the conduction band of the semiconductor nanorods to the redox electrolyte providing improvement in the charge separation at the nanocomposite photoelectrode. Upon incorporation of Au nanoparticles, the overall efficiency of the DSSC increased from 2.41% to 3.27%. The role of Au nanoparticles on the performance of the DSSCs for varying concentration of the Au nanoparticles as well as the post-growth annealing treatment of the nanocomposite photoelectrode is reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-101

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Michael Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science 334 (2011) 629-634.

DOI: 10.1126/science.1209688

Google Scholar

[3] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater. 4 (2005) 455-459.

DOI: 10.1038/nmat1387

Google Scholar

[4] T. Soga, Nanostructured Materials for Solar Energy Conversion, first ed., Elsevier, Amsterdam, 2006.

Google Scholar

[5] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'- dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN- and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115 (1993) 6382-6390.

DOI: 10.1021/ja00067a063

Google Scholar

[6] S.A. Haque, Y. Tachibana, R.L. Willis, J.E. Moser, M. Grätzel, D.R. Klug, J.R. Durrant, Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films, J. Phys. Chem. B 104 (2000) 538-547.

DOI: 10.1021/jp991085x

Google Scholar

[7] P. Wang, S.M. Zakeeruddin, J.E. Moser, M. Grätzel, A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells, J. Phys. Chem. B 107 (2003) 13280- 13285.

DOI: 10.1021/jp0355399

Google Scholar

[8] B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, Interfacial recombination processes in dye- sensitized solar cells and methods to passivate the interfaces, J. Phys. Chem. B 105 (2001) 1422-1429.

DOI: 10.1021/jp003000u

Google Scholar

[9] E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc. 125 (2003) 475-482.

DOI: 10.1021/ja027945w

Google Scholar

[10] L.E. Greene, M. Law, B.D. Yuhas, P. Yang, ZnO-TiO2 core-shell nanorod/P3HT solar cells, J. Phys. Chem. C 111 (2007) 18451-18456.

DOI: 10.1021/jp077593l

Google Scholar

[11] M. Wang, C. Huang, Y. Cao, Q. Yu, Z. Deng, Y. Liu, Z. Huang, J. Huang, Q. Huang, W. Guo, J. Liang, Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays, J. Phys. D: Appl. Phys. 42 (2009) 155104-155109.

DOI: 10.1088/0022-3727/42/15/155104

Google Scholar

[12] X.T. Zhang, I. Sutanto, T. Taguchi, K. Tokuhiro, Q.B. Meng, T.N. Rao, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Al2O3-coated nanoporous TiO2 electrode for solid- state dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells 80 (2003) 315-326.

DOI: 10.1039/b306118c

Google Scholar

[13] M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells, J. Phys. Chem. B 110 (2006) 22652-22663.

DOI: 10.1021/jp0648644

Google Scholar

[14] S. Barazzouk, S. Hotchandani, Enhanced charge separation in chlorophyll a solar cell by gold nanoparticles, J. Appl. Phys. 96 (2004) 7744-7746.

DOI: 10.1063/1.1811775

Google Scholar

[15] Z.H. Chen, Y.B. Tang, C.P. Liu, Y.H. Leung, G.D. Yuan, L.M. Chen, Y.Q. Wang, I. Bello, J.A. Zapien, W.J. Zhang, C.S. Lee, S.T. Lee, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for schottky barrier photovoltaic cells, J. Phys. Chem. C 113 (2009) 13433-13437.

DOI: 10.1021/jp903153w

Google Scholar

[16] C.S. Chou, R.Y. Yang, C.K. Yeh, Y.J. Lin, Preparation of TiO2/Nano-metal composite particles and their applications in dye-sensitized solar cells, Powder Technol. 194 (2009) 95- 105.

DOI: 10.1016/j.powtec.2009.03.039

Google Scholar

[17] Y.H. Su, W.H. Lai, L.G. Teoh, M.H. Hon, J.L. Huang, Layer-by-layer Au nanoparticles as a Schottky barrier in a water-based dye-sensitized solar cell, Appl. Phys. A: Mater. Sci. Process. 88 (2007) 173-178.

DOI: 10.1007/s00339-007-3988-7

Google Scholar

[18] K.R. Catchpole, A. Polman, Plasmonic solar cells, Opt. Express 16 (2008) 21793-21800.

DOI: 10.1364/oe.16.021793

Google Scholar

[19] S. Baruah, J. Dutta, Effect of seeded substrates on hydrothermally grown ZnO nanorods, J. Sol-Gel Sci. Technol. 50 (2009) 456-464.

DOI: 10.1007/s10971-009-1917-2

Google Scholar

[20] A. Sugunan, J. Dutta, Novel synthesis of gold nanoparticles in aqueous media, Mater. Res. Soc. Symp. Proc. 901 (2005) 257-262.

DOI: 10.1557/proc-0901-ra16-55-rb16-55

Google Scholar

[21] L.J. Brillson, L. Yicheng, ZnO Sbhottky barriers and Ohmic contacts, J. Appl. Phys. 109 (2011) 121301-1213033.

Google Scholar

[22] K. Ip, G.T. Thaler, H. Yang, S.Y. Han, Y. Li, D.P. Norton, S.J. Pearton, S. Jang, F. Ren, Contacts to ZnO, J. Cryst. Growth 287 (2006) 149-156.

DOI: 10.1016/j.jcrysgro.2005.10.059

Google Scholar

[23] L.J. Brillson, H.L. Mosbacker, M.J. Hetzer, Y. Strzhemechny, G.H. Jessen, D.C. Look, G. Cantwell, J. Zhang, J. J. Song, Dominant effect of near-interface native point defects on ZnO Schottky barriers, Appl. Phys. Lett. 90 (2007) 102116 - 102118.

DOI: 10.1063/1.2711536

Google Scholar

[24] L.J. Brillson, H.L. Mosbacker, M.J. Hetzer, Y. Strzhemechny, D.C. Look, G. Cantwell, J. Zhang, J.J. Song, Surface and near-surface passivation, chemical reaction, and Schottky barrier formation at ZnO surfaces and interfaces, Appl. Surf. Sci. 254 (2008) 8000-8004.

DOI: 10.1016/j.apsusc.2008.03.050

Google Scholar

[25] P.V. Kamat, Quantum dot solar cells: Semiconductor nanocrystals as light harvesters, J. Phys. Chem. C 112 (2008) 18737-18753.

DOI: 10.1021/jp806791s

Google Scholar

[26] M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today 36 (1997) 153-166.

DOI: 10.1016/s0920-5861(96)00208-8

Google Scholar