[1]
B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[2]
A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Michael Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science 334 (2011) 629-634.
DOI: 10.1126/science.1209688
Google Scholar
[3]
M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater. 4 (2005) 455-459.
DOI: 10.1038/nmat1387
Google Scholar
[4]
T. Soga, Nanostructured Materials for Solar Energy Conversion, first ed., Elsevier, Amsterdam, 2006.
Google Scholar
[5]
M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'- dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN- and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115 (1993) 6382-6390.
DOI: 10.1021/ja00067a063
Google Scholar
[6]
S.A. Haque, Y. Tachibana, R.L. Willis, J.E. Moser, M. Grätzel, D.R. Klug, J.R. Durrant, Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films, J. Phys. Chem. B 104 (2000) 538-547.
DOI: 10.1021/jp991085x
Google Scholar
[7]
P. Wang, S.M. Zakeeruddin, J.E. Moser, M. Grätzel, A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells, J. Phys. Chem. B 107 (2003) 13280- 13285.
DOI: 10.1021/jp0355399
Google Scholar
[8]
B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, Interfacial recombination processes in dye- sensitized solar cells and methods to passivate the interfaces, J. Phys. Chem. B 105 (2001) 1422-1429.
DOI: 10.1021/jp003000u
Google Scholar
[9]
E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc. 125 (2003) 475-482.
DOI: 10.1021/ja027945w
Google Scholar
[10]
L.E. Greene, M. Law, B.D. Yuhas, P. Yang, ZnO-TiO2 core-shell nanorod/P3HT solar cells, J. Phys. Chem. C 111 (2007) 18451-18456.
DOI: 10.1021/jp077593l
Google Scholar
[11]
M. Wang, C. Huang, Y. Cao, Q. Yu, Z. Deng, Y. Liu, Z. Huang, J. Huang, Q. Huang, W. Guo, J. Liang, Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays, J. Phys. D: Appl. Phys. 42 (2009) 155104-155109.
DOI: 10.1088/0022-3727/42/15/155104
Google Scholar
[12]
X.T. Zhang, I. Sutanto, T. Taguchi, K. Tokuhiro, Q.B. Meng, T.N. Rao, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Al2O3-coated nanoporous TiO2 electrode for solid- state dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells 80 (2003) 315-326.
DOI: 10.1039/b306118c
Google Scholar
[13]
M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells, J. Phys. Chem. B 110 (2006) 22652-22663.
DOI: 10.1021/jp0648644
Google Scholar
[14]
S. Barazzouk, S. Hotchandani, Enhanced charge separation in chlorophyll a solar cell by gold nanoparticles, J. Appl. Phys. 96 (2004) 7744-7746.
DOI: 10.1063/1.1811775
Google Scholar
[15]
Z.H. Chen, Y.B. Tang, C.P. Liu, Y.H. Leung, G.D. Yuan, L.M. Chen, Y.Q. Wang, I. Bello, J.A. Zapien, W.J. Zhang, C.S. Lee, S.T. Lee, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for schottky barrier photovoltaic cells, J. Phys. Chem. C 113 (2009) 13433-13437.
DOI: 10.1021/jp903153w
Google Scholar
[16]
C.S. Chou, R.Y. Yang, C.K. Yeh, Y.J. Lin, Preparation of TiO2/Nano-metal composite particles and their applications in dye-sensitized solar cells, Powder Technol. 194 (2009) 95- 105.
DOI: 10.1016/j.powtec.2009.03.039
Google Scholar
[17]
Y.H. Su, W.H. Lai, L.G. Teoh, M.H. Hon, J.L. Huang, Layer-by-layer Au nanoparticles as a Schottky barrier in a water-based dye-sensitized solar cell, Appl. Phys. A: Mater. Sci. Process. 88 (2007) 173-178.
DOI: 10.1007/s00339-007-3988-7
Google Scholar
[18]
K.R. Catchpole, A. Polman, Plasmonic solar cells, Opt. Express 16 (2008) 21793-21800.
DOI: 10.1364/oe.16.021793
Google Scholar
[19]
S. Baruah, J. Dutta, Effect of seeded substrates on hydrothermally grown ZnO nanorods, J. Sol-Gel Sci. Technol. 50 (2009) 456-464.
DOI: 10.1007/s10971-009-1917-2
Google Scholar
[20]
A. Sugunan, J. Dutta, Novel synthesis of gold nanoparticles in aqueous media, Mater. Res. Soc. Symp. Proc. 901 (2005) 257-262.
DOI: 10.1557/proc-0901-ra16-55-rb16-55
Google Scholar
[21]
L.J. Brillson, L. Yicheng, ZnO Sbhottky barriers and Ohmic contacts, J. Appl. Phys. 109 (2011) 121301-1213033.
Google Scholar
[22]
K. Ip, G.T. Thaler, H. Yang, S.Y. Han, Y. Li, D.P. Norton, S.J. Pearton, S. Jang, F. Ren, Contacts to ZnO, J. Cryst. Growth 287 (2006) 149-156.
DOI: 10.1016/j.jcrysgro.2005.10.059
Google Scholar
[23]
L.J. Brillson, H.L. Mosbacker, M.J. Hetzer, Y. Strzhemechny, G.H. Jessen, D.C. Look, G. Cantwell, J. Zhang, J. J. Song, Dominant effect of near-interface native point defects on ZnO Schottky barriers, Appl. Phys. Lett. 90 (2007) 102116 - 102118.
DOI: 10.1063/1.2711536
Google Scholar
[24]
L.J. Brillson, H.L. Mosbacker, M.J. Hetzer, Y. Strzhemechny, D.C. Look, G. Cantwell, J. Zhang, J.J. Song, Surface and near-surface passivation, chemical reaction, and Schottky barrier formation at ZnO surfaces and interfaces, Appl. Surf. Sci. 254 (2008) 8000-8004.
DOI: 10.1016/j.apsusc.2008.03.050
Google Scholar
[25]
P.V. Kamat, Quantum dot solar cells: Semiconductor nanocrystals as light harvesters, J. Phys. Chem. C 112 (2008) 18737-18753.
DOI: 10.1021/jp806791s
Google Scholar
[26]
M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today 36 (1997) 153-166.
DOI: 10.1016/s0920-5861(96)00208-8
Google Scholar