[1]
F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Influence of electrolyte in Transport and recombination of dye-sensitized solar cells studied by impedance spectroscopy, Sol. Energy Mater. Sol. Cells. 87 (2005)117-131.
DOI: 10.1016/j.solmat.2004.07.017
Google Scholar
[2]
F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar cells based on Ionic Liquids, J. Phys. Chem. C 111 (2007) 6550-6560.
DOI: 10.1021/jp066178a
Google Scholar
[3]
Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells, J. Phys. Chem. B 110 (2006) 25210- 25221.
DOI: 10.1021/jp064256o
Google Scholar
[4]
Q. Wang, J. E. Moser, M. Grätzel, Electrochemical spectroscopic analysis of dye- sensitized solar cells, J. Phys. Chem. B, 109 (2005) 14945-14953.
DOI: 10.1021/jp052768h
Google Scholar
[5]
Q. Wang, Z. Zhang, S. M. Zakeeruddin, M. Grätzel, Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination, J. Phys. Chem. C, 112 (2008) 7084-7092.
DOI: 10.1021/jp800426y
Google Scholar
[6]
J. Bisquert, D. Cahen, G. Hodes, S. Ru1hle, A. Zaban, Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells, J. Phys. Chem. B 108 (2004) 8106-8118.
DOI: 10.1021/jp0359283
Google Scholar
[7]
M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, J. Phys. Chem. B 110 (2006) 13872-13880.
DOI: 10.1021/jp061693u
Google Scholar
[8]
V. Baglio, M. Girolamo, V. Antonucci, A. S. Arico, Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells, Int. J. Electrochem. Sci. 6 (2011) 3375 – 3384.
Google Scholar
[9]
T. Ono, T. Yamaguchi, H. Arakawa, Study on dye-sensitized solar cell using novel infrared dye, Sol. Energy Mater. Sol. Cells. 93 (2009) 831–835.
DOI: 10.1016/j.solmat.2008.09.038
Google Scholar
[10]
L. Han, N. Koide, Y. Chiba, T. Mitate, Modeling of an equivalent circuit for dye- sensitized solar cells, Appl. Phys. Lett. 84 (2004) 2433–2435.
DOI: 10.1063/1.1690495
Google Scholar
[11]
J. Van de Lagemaat, N. G. Park and A. J. Frank, Influence of electrical potential distribution, charge transport, and recombination on the photo potential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques, J. Phys. Chem. B, 104 (2000) 2044-2052.
DOI: 10.1021/jp993172v
Google Scholar
[12]
C. Longo, J. Freitas, M. A. De Paoli, Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte, J. Photochem, Photobiol. A: Chem. 159 (2003) 33- 39.
DOI: 10.1016/s1010-6030(03)00106-0
Google Scholar
[13]
M. C. Bernard, H. Cachet, P. Falaras, A. Hugot-Le Goff, M. Kalbac, I. Lukes, N. T. Oanh, T. Stergiopoulos, I. Arabatzis, Sensitization of TiO2 by polypyridine dyes , role of the electron donor, J. Electrochem. Soc. 150 (2003) 155-164.
DOI: 10.1149/1.1543951
Google Scholar
[14]
J. Bisquert, Theory of the Impedance of electron diffusion and recombination in a thin layer, J. Phys. Chem. B. 106 (2002) 325-333.
DOI: 10.1021/jp011941g
Google Scholar
[15]
R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, J. Electrochim. Acta, 47 (2002) 4213-4225.
DOI: 10.1016/s0013-4686(02)00444-9
Google Scholar
[16]
A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim. Acta 46 (2001) 3457-3466.
DOI: 10.1016/s0013-4686(01)00540-0
Google Scholar