Electrochemical Impedance Spectroscopic Study on DSSC Sensitized with Begonia malabarica Lam.

Article Preview

Abstract:

Electrochemical Impedance Spectroscopic studies of dye sensitized solar cells fabricated using Begonia malabarica Lam. as sensitizer has been carried out. Various electrochemical parameters such as charge transport resistance at the TiO2/dye/electrolyte interface, recombination resistance, chemical capacitance, transient diffusion coefficient, diffusion length and time constant, were calculated using Diffusion-recombination transmission line model. The evaluation of these parameters provides the underlying charge transport mechanism for the present cell. The reported cell has an efficiency of 1.74 % and fill factor of 45%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-141

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Influence of electrolyte in Transport and recombination of dye-sensitized solar cells studied by impedance spectroscopy, Sol. Energy Mater. Sol. Cells. 87 (2005)117-131.

DOI: 10.1016/j.solmat.2004.07.017

Google Scholar

[2] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar cells based on Ionic Liquids, J. Phys. Chem. C 111 (2007) 6550-6560.

DOI: 10.1021/jp066178a

Google Scholar

[3] Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells, J. Phys. Chem. B 110 (2006) 25210- 25221.

DOI: 10.1021/jp064256o

Google Scholar

[4] Q. Wang, J. E. Moser, M. Grätzel, Electrochemical spectroscopic analysis of dye- sensitized solar cells, J. Phys. Chem. B, 109 (2005) 14945-14953.

DOI: 10.1021/jp052768h

Google Scholar

[5] Q. Wang, Z. Zhang, S. M. Zakeeruddin, M. Grätzel, Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination, J. Phys. Chem. C, 112 (2008) 7084-7092.

DOI: 10.1021/jp800426y

Google Scholar

[6] J. Bisquert, D. Cahen, G. Hodes, S. Ru1hle, A. Zaban, Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells, J. Phys. Chem. B 108 (2004) 8106-8118.

DOI: 10.1021/jp0359283

Google Scholar

[7] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, J. Phys. Chem. B 110 (2006) 13872-13880.

DOI: 10.1021/jp061693u

Google Scholar

[8] V. Baglio, M. Girolamo, V. Antonucci, A. S. Arico, Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells, Int. J. Electrochem. Sci. 6 (2011) 3375 – 3384.

Google Scholar

[9] T. Ono, T. Yamaguchi, H. Arakawa, Study on dye-sensitized solar cell using novel infrared dye, Sol. Energy Mater. Sol. Cells. 93 (2009) 831–835.

DOI: 10.1016/j.solmat.2008.09.038

Google Scholar

[10] L. Han, N. Koide, Y. Chiba, T. Mitate, Modeling of an equivalent circuit for dye- sensitized solar cells, Appl. Phys. Lett. 84 (2004) 2433–2435.

DOI: 10.1063/1.1690495

Google Scholar

[11] J. Van de Lagemaat, N. G. Park and A. J. Frank, Influence of electrical potential distribution, charge transport, and recombination on the photo potential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques, J. Phys. Chem. B, 104 (2000) 2044-2052.

DOI: 10.1021/jp993172v

Google Scholar

[12] C. Longo, J. Freitas, M. A. De Paoli, Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte, J. Photochem, Photobiol. A: Chem. 159 (2003) 33- 39.

DOI: 10.1016/s1010-6030(03)00106-0

Google Scholar

[13] M. C. Bernard, H. Cachet, P. Falaras, A. Hugot-Le Goff, M. Kalbac, I. Lukes, N. T. Oanh, T. Stergiopoulos, I. Arabatzis, Sensitization of TiO2 by polypyridine dyes , role of the electron donor, J. Electrochem. Soc. 150 (2003) 155-164.

DOI: 10.1149/1.1543951

Google Scholar

[14] J. Bisquert, Theory of the Impedance of electron diffusion and recombination in a thin layer, J. Phys. Chem. B. 106 (2002) 325-333.

DOI: 10.1021/jp011941g

Google Scholar

[15] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, J. Electrochim. Acta, 47 (2002) 4213-4225.

DOI: 10.1016/s0013-4686(02)00444-9

Google Scholar

[16] A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim. Acta 46 (2001) 3457-3466.

DOI: 10.1016/s0013-4686(01)00540-0

Google Scholar