Effect of Sintering Profiles on Titania Interparticle Connectivity, Electron Transport and Interfacial Resistance in Dye-Sensitized Solar Cells

Article Preview

Abstract:

TiO2 films, which are often sintered at 450°C for 30 or 60 minutes for application in dye-sensitized solar cells (DSSCs), show no appreciable connectivity between the TiO2 particles. The present work deals with connectivity between TiO2 particles and its effect on electron diffusion and short circuit current density (Jsc) of DSSCs made from TiO2 films sintered at lower temperature for longer time (450°C, 550°C, 650°C for 60 minutes) and higher temperature for shorter time (450°C for 60 min followed by 700°C and 800°C for 10 and 20 minutes). TiO2 films sintered at higher temperature (700°C) but for shorter time (10 min) exhibited better connectivity between the particles with slight reduction in surface area. This caused faster transport of electron through the films sintered at 700°C/10 min than 450°C/60 min and 550°C/60 min and hence, resulted in highest Jsc (~ 7 mA/cm2). Films sintered at 650°C/60 min and 700°C/20 min showed better interparticle connectivity but had significantly lower surface area, dye loading and therefore, despite faster diffusion of electron in these films Jsc was measured to be lower. Sintering at 700°C/10 min following 450°C/60 min could be considered the best in terms of dye loading, electron transport and efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-157

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-Sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] J. Nelson, Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes, Phys. Rev. B 59 (1999) 15374-15380.

DOI: 10.1103/physrevb.59.15374

Google Scholar

[3] A. Solbrand, H. Lindstrom, H. Rensmo, A. Hagfeldt, S.-E. Lindquist and S. Sodergren, Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents, J. Phys. Chem. B 101 (1997) 2514-2518.

DOI: 10.1021/jp962819y

Google Scholar

[4] S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki and S. Yoshikawa, Single- and double- layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells 86 (2005) 269-282.

DOI: 10.1016/j.solmat.2004.06.010

Google Scholar

[5] S. Kambe, S. Nakade, Y. Wada, T. Kitamura and S. Yanagida, Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes, J. Mater. Chem. 12 (2002) 723-728.

DOI: 10.1039/b105142n

Google Scholar

[6] N. G. Park, J. van de Lagemaat and A. J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, J. Phys. Chem. B 104 (2000) 8989-8994.

DOI: 10.1021/jp994365l

Google Scholar

[7] G. Li, C. P. Richter, R. L. Milot, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig and V. S. Batista, Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells, Dalton Trans. (2009) 10078-10085.

DOI: 10.1039/b908686b

Google Scholar

[8] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori and S. Yanagida, Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells, J. Phys. Chem. B 106 (2002) 10004-10010.

DOI: 10.1021/jp020051d

Google Scholar

[9] P. Balraju, P. Suresh, M. Kumar, M. S. Roy and G. D. Sharma, Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye, J. Photochem. Photobiol., A 206 (2009) 53-63.

DOI: 10.1016/j.jphotochem.2009.05.014

Google Scholar

[10] K. Hou, B. Tian, F. Li, Z. Bian, D. Zhao and C. Huang, Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells, J. Mater. Chem. 15 (2005) 2414- 2420.

DOI: 10.1039/b417465h

Google Scholar

[11] L. Lu, R. Li, K. Fan and T. Peng, Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles, Sol. Energy 84 (2010) 844-853.

DOI: 10.1016/j.solener.2010.02.010

Google Scholar

[12] G. Kantonis, T. Stergiopoulos, A. P. Katsoulidis, P. J. Pomonis and P. Falaras, Electron dynamics dependence on optimum dye loading for an efficient dye-sensitized solar cell, J. Photochem. Photobiol., A 217 (2011) 236-241.

DOI: 10.1016/j.jphotochem.2010.10.015

Google Scholar

[13] M. Ansari-Rad, Y. Abdi and E. Arzi, Monte Carlo Random walk simulation of electron transport in dye-sensitized nanocrystalline solar cells: influence of morphology and trap distribution, J. Phys. Chem. C 116 (2012) 3212-3218.

DOI: 10.1021/jp207907b

Google Scholar

[14] J. A. Anta and V. Morales-Florez, Combined effect of energetic and spatial disorder on the trap-limited electron diffusion coefficient of metal-oxide nanostructures, J. Phys. Chem. C 112 (2008) 10287-10293.

DOI: 10.1021/jp712005k

Google Scholar

[15] A. J. Frank, N. Kopidakis and J. v. d. Lagemaat, Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties, Coord. Chem. Rev. 248 (2004) 1165-1179.

DOI: 10.1016/j.ccr.2004.03.015

Google Scholar

[16] M. J. Cass, F. L. Qiu, A. B. Walker, A. C. Fisher and L. M. Peter, Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells, J. Phys. Chem. B 107 (2002) 113-119.

DOI: 10.1021/jp026798l

Google Scholar

[17] J. Yu, H. Yu, B. Cheng, M. Zhou and X. Zhao, Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment, J. Molecul. Catal. A 253 (2006) 112-118.

DOI: 10.1016/j.molcata.2006.03.021

Google Scholar

[18] Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sere, J. Bisquert, T. Bessho and H. Imai, Characteristics of high efficiency dye-sensitized solar cells, J. Phys. Chem. B 110 (2006) 25210-25221.

DOI: 10.1021/jp064256o

Google Scholar

[19] J. Bisquert, F. Fabregat-Santiago, I. n. Mora-Sero, G. Garcia-Belmonte and S. Gimenez, Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements, J. Phys. Chem. C 113 (2009) 17278-17290.

DOI: 10.1021/jp9037649

Google Scholar

[20] H. K. Dunn and L. M. Peter, How efficient is electron collection in dye-sensitized solar cells? comparison of different dynamic methods for the determination of the electron diffusion length, J. Phys. Chem. C 113 (2009) 4726-4731.

DOI: 10.1021/jp810884q

Google Scholar

[21] K. Miettunen, J. Halme, M. Toivola and P. Lund, Initial performance of dye solar cells on stainless steel substrates, J. Phys. Chem. C 112 (2008) 4011-4017.

DOI: 10.1021/jp7112957

Google Scholar