Effect of Nanograss and Annealing Temperature on TiO2 Nanotubes Based Dye Sensitized Solar Cells

Article Preview

Abstract:

In TiO2 nanoparticle based dye sensitized solar cells (DSSC), the electron injected from the dye has to cross multiple interparticle boundaries in random directions before reaching the electrode. For application in DSSCs, the directional pathway for electron transport through the nanotubes is known to reduce the recombination rate. In the present study, titania nanotubes with nanograss layer have been fabricated by anodization of titanium foil in fluoride containing organic electrolyte. Dye sensitized solar cells with photoanode made of titania nanotubes covered with nanograsswas found to have a higher efficiency than ones made with only titania nanotubes of the same length.This can be attributed to enhanced dye adsorption on nanotubes with nanograss. The efficiency of DSSC using titania nanotubes is also affected by the annealing conditions such as duration, temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-113

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem.Photobiol. C. Photochem. Rev. 1 (2000) 1–21.

Google Scholar

[2] M. Gratzel, Photoelectrochemical cells, Nature. 414 (2001) 338-344.

Google Scholar

[3] O.K. Varghese, D. Gong, M. Paulose, K. G. Ong, C. A. Grimes, Hydrogen sensing using titania nanotubes,Sens. Actuators B. 93 (2003) 338–344.

DOI: 10.1016/s0925-4005(03)00222-3

Google Scholar

[4] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson,Dye-sensitized solar cell, Chem. Rev. 110 (2010) 6595–6663.

DOI: 10.1021/cr900356p

Google Scholar

[5] B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737- 740.

DOI: 10.1038/353737a0

Google Scholar

[6] A. Yella, H. Lee, H. N. Tsao, C. Yi, A. K. Chandiran , M. K. Nazeeruddin, E. W. Diau, C. Yeh, S. M Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with Cobalt (ii/iii)–based redox electrolyte exceed 12 percent efficiency, Science, 334 (2011) 629-634.

DOI: 10.1126/science.1209688

Google Scholar

[7] R. Jose, V.Thavasi, S. Ramakrishna. Metal oxides for dye sensitized solar cells, J. Am. Ceram. Soc. 92, 2 (2009) 289–301.

DOI: 10.1111/j.1551-2916.2008.02870.x

Google Scholar

[8] N.-G. Park, J. van de Lagemaat, A. J. Frank, Comparison of dye sensitized rutile and anatase-based TiO2solar cells, J. Phys. Chem. B.104 (2000) 8989-8994.

DOI: 10.1021/jp994365l

Google Scholar

[9] P.Roy, S. Berger, P. Schmuki, TiO2nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 50 (2011) 2904-2939.

DOI: 10.1002/anie.201001374

Google Scholar

[10] D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, The effect of hydrothermal conditions on the mesoporousstructure of TiO2 nanotubes. J. Mater. Chem.14 (2004) 3370-3377.

DOI: 10.1039/b406378c

Google Scholar

[11] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide nanotube. Langmuir, 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[12] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C.P. Tripp, Template–assisted fabrication of dense, aligned arrays of titania nanotubes with well controlled dimensions on substrates. Adv. Mater. 16 (2004) 2052-2057.

DOI: 10.1002/adma.200400446

Google Scholar

[13] D.Gong, C. A.Grimes, O. K.Varghese, W.Hu, R. S.Singh, Z.Chen, E. C.Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16 (2001) 3331–3334.

DOI: 10.1557/jmr.2001.0457

Google Scholar

[14] M. Paulose, K. Shankar, O. K. Varghese, G. K Mor, B. Hardin and C. A Grimes, Backside illuminated dyesensitized solar cells based on titania nanotube array electrodes, Nanotechnology 17 (2006) 1446–1448.

DOI: 10.1088/0957-4484/17/5/046

Google Scholar

[15] D. Kim, A. Ghicov, P. Schmuki, TiO2 Nanotube arrays: Elimination of disordered top layers (''nanograss") for improved photoconversion efficiency in dye-sensitized solar cells, Electrochem. Commun.10 (2008) 1835–1838.

DOI: 10.1016/j.elecom.2008.09.029

Google Scholar

[16] C. A. Grimes, G. K. Mor, TiO2 nanotube arrays synthesis, properties, and applications, Springer,2009.

Google Scholar

[17] J. H. Lim, J. Choi, Titanium Oxide nanowires originating from anodically grown nanotubes: the Bamboo splitting model, Small. 3 (2007) 1504 –1507.

DOI: 10.1002/smll.200700114

Google Scholar

[18] Z. Sun, J. H. Kim, T. Liao, Y. Zhao, F. Bijarbooneh, V. Malgras, S. X. Dou, Continually adjustable oriented 1DTiO2 nanostructure arrays with controlled growth of morphology and their application in dyesensitized solar cells. CrysEngComm. 14 (2012) 5472–5478.

DOI: 10.1039/c2ce00014h

Google Scholar