A Critical Review on Mesoporous Photoanodes for Dye-Sensitized Solar Cells

Article Preview

Abstract:

Until breakthrough in 1991, commercialization of dye-sensitized solar cell (DSSC) has been a gradual process leading to a scarce production. A thorough study of dilemmas is needed to overcome the shortcomings of DSSC to make it stand against traditional silicon based solar cells. A DSSC is composed of important components including photoanode, dye, electrolyte and counter electrode. Among these photoanode is the focussed area of the presented article. The photoanode is a thin porous film of metal oxide semiconductor supported on to a transparent conducting oxide (TCO) glass. Extensive research in this field has revealed the photophysics of semiconducting electrodes like TiO2, ZnO and SnO2 etc. Selection of metal oxide for this purpose relies on crystallinity, particle size, and thickness of the film, surface area, dye affinity and porosity. These parameters related to the candidature of a particular metal oxide film as photoanode in DSSC have been discussed and optimized values have been quoted. The present study aims at emphasizing the history of DSSC as well as recent developments in electrodes, dyes and electrolytes in this specific area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-69

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Tricoli, A. S. Wallerand, M. Righettoni, Highly porous TiO2 films for dye sensitized solar cells, J. Mater. Chem. 22 (2012) 14254-14261.

DOI: 10.1039/c2jm15953h

Google Scholar

[2] IEA, Key world Energy Statistics 2007, 25 (2007) 1-17.

Google Scholar

[3] http:\www.mnre.gov.in/ mission-and-vision-2/achievements

Google Scholar

[4] J. Preat, D. Jacquemin, E. A. Perpète, Towards new efficient dye-sensitized solar cells, Energy Environ. Sci. 3 (2010) 891-904.

DOI: 10.1039/c000474j

Google Scholar

[5] B. O. Regan, M. Gratzel, Photoelectrochemical Solar cells, Nature. 353 (1991) 737-742.

Google Scholar

[6] M. Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem. 44 (2005) 6841–6851.

DOI: 10.1021/ic0508371

Google Scholar

[7] http:\www.solarserver.com

Google Scholar

[8] http://www.commodityonline.com/news/dsc-photovoltaics-market-to-reach-$12-bn-in-2020- nanomarkets.html

Google Scholar

[9] G. Liu,  X. Yan,  Z. Chen,  X. Wang,  L. Wang,  G. Q. Lu, H. M. Cheng, Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis, J. Mater. Chem. 19 (2009) 6590-6596.

DOI: 10.1039/b902666e

Google Scholar

[10] R. Shirley, M. Kraft, Electronic and optical properties of aluminium-doped anatase and rutile TiO2 from ab-initio calculations, Phys. Rev. B. 56 (2010) 075111-9.

Google Scholar

[11] M. Gratzel, Mesoporous Oxide Junctions and Nanostructured Solar Cells, Curr. Opin. Colloid Interf. Sci. 4 (1999) 314-319.

Google Scholar

[12] Y. Jun, J. Kim, M. G. Kang, A study of stainless steel-based dye-sensitized solar cells and modules, Sol. Energy Mater. and Sol. Cells. 91 (2007) 779-784.

DOI: 10.1016/j.solmat.2007.01.007

Google Scholar

[13] K. Kalyanasundaram, M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev. 177 (1998) 347-414.

DOI: 10.1016/s0010-8545(98)00189-1

Google Scholar

[14] A. Tricoli,  A. S. Wallerand, M. Righettoni, Highly porous TiO2 films for dye-sensitized solar cells, J. Mater. Chem. 22 (2012) 14254-14261.

DOI: 10.1039/c2jm15953h

Google Scholar

[15] N. G. Park, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, J. Phys. Chem. B. 104 (2000) 8989-94.

Google Scholar

[16] G. Liu,  X. Yan,  Z. Chen,  X. Wang,  L. Wang,  G. Q. Lu, H. M. Cheng, Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis, J. Mater. Chem. 19 (2009) 6590-6596.

DOI: 10.1039/b902666e

Google Scholar

[17] D. Jyoti, D. Mohan, R. Dhar, Investigation of the opulent porosity for better performance of dye-sensitized solar cell, J. Renewable Sustainable Energy. 5 (2013) 013112-4.

DOI: 10.1063/1.4790811

Google Scholar

[18] D. Jyoti, D. Mohan, R. Dhar, Purnima, Influence of electrode thickness on the performance of dye-sensitized solar cells, Invertis J. Renewable Energy. 1 (2011) 108-114.

Google Scholar

[19] M. Grätzel, Perspectives for Dye-Sensitized Nanocrystalline Solar Cells, Prog. Photovolt. Res. ppl. 8 (2000) 171-185.

DOI: 10.1002/(sici)1099-159x(200001/02)8:1<171::aid-pip300>3.0.co;2-u

Google Scholar

[20] M. Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem. 44 (2005) 6841–6851.

DOI: 10.1021/ic0508371

Google Scholar

[21] A. Hagfeldt, M. Gratzel, Molecular Photovoltaics, Acc. Chem. Res. 33 (2000) 269-277.

Google Scholar

[22] K. Kalyanasundaram, M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev. 177 (1998) 347-414.

DOI: 10.1016/s0010-8545(98)00189-1

Google Scholar

[23] A. Hagfeldt, Verification of high efficiencies for the Grätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO2 films, Sol. Ene. Mater. & Sol. Cells, 31 (1994) 481-488.

DOI: 10.1016/0927-0248(94)90190-2

Google Scholar

[24] Solaronix, Dye Solar Cell Assembly, instructions received from Solaronix SA, (2000).

Google Scholar

[25] H. Zabri, F. Odobel, S. Altobello, S. Caramori, C. A. Bignozzi, Efficient osmium sensitizers containing 2,2'-bipyridine-4,4'-bisphosphonic acid ligand, J. Photochem. Phtobio. A: Chem. 166 (2004) 99-106.

DOI: 10.1016/j.jphotochem.2004.04.030

Google Scholar

[26] N. Onozawa-Komatsuzaki, M. Yanagida, T. Funaki, K. Kasuga, K. Sayama, H. Sugihara, Near IR dye-sensitized solar cells using a new type of ruthenium complexes having 2,6-bis (quinolin-2-yl) pyridine derivatives, Sol. Energy. Mater. Sol. Cells. 95 (2011) 310-314.

DOI: 10.1016/j.solmat.2010.05.003

Google Scholar

[27] R. C. White, J. E. Benedetti, Agnaldo D. Gonc¸ Alves, W. Romão, B. G. Vaz, M. N. Eberlin, Carlos R.D. Correia, Marco A. De Paoli, A. F. Nogueira, Synthesis, characterization and introduction of a new ion-coordinating ruthenium sensitizer dye in quasi-solid state TiO2 solar cells, J. Photochem. Photobio. A: Chem. 222 (2011) 185-191.

DOI: 10.1016/j.jphotochem.2011.05.020

Google Scholar

[28] G. Wolfbauer, A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells, Solar Energy Materials & Solar Cells. 70 (2001) 85-101.

DOI: 10.1016/s0927-0248(00)00413-x

Google Scholar

[29] L. L. Kazmerski, Photovoltaics: A review of cell and module technologies, Renew. Sustain. Energy Rev. 1 (1997) 71-170.

Google Scholar

[30] N. Papageorgiou, An Iodine/Triiodide reduction Electrocatalyst for Aqueous and Organic Media, J. Electrochem. Soc. 144 (1997) 876-84.

DOI: 10.1149/1.1837502

Google Scholar

[31] A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cells. 44 (1996) 99-117.

DOI: 10.1016/0927-0248(96)00063-3

Google Scholar

[32] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye- sensitized solar cells with conversion efficiency of 11.1%, Jpn. J. Appl. Phys. 45 (2006) L638-L640.

DOI: 10.1143/jjap.45.l638

Google Scholar

[33] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Review of recent progress in solid state dye sensitized solar cells, Sol. Energy Mater Sol. Cell. 90 (2005) 549-573.

DOI: 10.1016/j.solmat.2005.04.039

Google Scholar