The Influence of Heat Treatment on the Structure and Microstructure of Ti-15Mo-xNb System Alloys for Biomedical Applications

Article Preview

Abstract:

The Ti-15Mo-xNb system integrates a new class of titanium alloys without the presence of aluminum and vanadium, which exhibit cytotoxicity, and that have low elasticity modulus values (below 100 GPa). This occurs because these alloys have a beta structure, which is very attractive for use as biomaterials. In addition, Brazil has about 90% of the world’s resources of niobium, which is very important economically. It strategically invests in research on the development and processing of alloys containing this element. In this paper, a study of the influence of heat treatments on the structure and microstructure of the alloys of a Ti-15Mo-xNb system is presented. The results showed grain grown with heat treatment and elongated and irregular grains after lamination due to this processing. After quenching, there were no changes in the microstructure in relation to heat-treated and laminated conditions. These results corroborate the x-ray diffraction results, which showed the predominance of the β phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1255-1260

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, New York 2005).

Google Scholar

[2] M. Niinomi: Journal of the Mechanical Behavior of Biomedical Materials Vol. 1 (2008), pp.30-42.

Google Scholar

[3] Brasil: Anuário Mineral Brasileiro (Departamento Nacional de Produção Mineral, Brasília 2010).

Google Scholar

[4] A. S. Nowick and B. S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press, New York 1972).

Google Scholar

[5] G. Lütjering: Materials Science and Engineering: A Vol. 243 (1998), pp.32-45.

Google Scholar

[6] L. J. Xu, Y. Y. Chen, Z. G. Liu and F. T. Kong: Journal of Alloys and Compounds Vol. 453 (2008), pp.320-324.

Google Scholar

[7] S. B. Gabriel, C. A. Nunes and G. d. A. Soares: Artificial Organs Vol. 32 (2008), pp.299-304.

Google Scholar

[8] S. B. Gabriel, J. Dille, C. A. Nunes and G. d. A. Soares: Materials Research Vol. 13 (2010), pp.333-337.

Google Scholar

[9] S. B. Gabriel, J. V. P. Panaino, I. D. Santos, L. S. Araujo, P. R. Mei, L. H. de Almeida and C. A. Nunes: Journal of Alloys and Compounds Vol. 536, Supplement 1 (2012), p. S208-S210.

DOI: 10.1016/j.jallcom.2011.11.035

Google Scholar

[10] Y. Al-Zain, H. Y. Kim, H. Hosoda, T. H. Nam and S. Miyazaki: Acta Materialia Vol. 58 (2010), pp.4212-4223.

DOI: 10.1016/j.actamat.2010.04.013

Google Scholar

[11] J. R. S. Martins Jr., M. A. R. Buzalaf and C. R. Grandini: submitted to Journal of Materials Science: Materials in Medicine (2013).

Google Scholar

[12] E. W. Collins: The Physical Metallurgy of Titanium Alloys (ASM International, Ohio 1989).

Google Scholar

[13] N. N. Sobolev: Molybdenum-Titanium-Vanadium Ternary Alloy Phase Diagram (ASM International, Materials Park 2007).

Google Scholar

[14] J. R. S. Martins Jr. and C. R. Grandini: submitted to Journal of Applied Physics (2013).

Google Scholar

[15] J. R. S. Martins Jr., R. A. Nogueira, R. O. d. Araújo, T. A. G. Donato, V. E. Arana-Chavez, A. P. R. A. Claro, J. C. S. Moraes, M. A. R. Buzalaf and C. R. Grandini: Materials Research Vol. 14 (2011), pp.107-112.

DOI: 10.1590/s1516-14392011005000013

Google Scholar

[16] J. J. R. S. Martins Jr and C. R. Grandini: Journal of Applied Physics Vol. 111 (2012), pp.083535-8.

Google Scholar

[17] P. J. Bania: Beta Titanium Alloys and Their Role in the Titanium Industry (The Mineral, Metals & Materials Society, Warrendale 1993).

Google Scholar

[18] W. F. Ho, C. P. Ju and J. H. Chern Lin: Biomaterials Vol. 20 (1999), pp.2115-2122.

Google Scholar

[19] R. J. Hill and C. J. Howard: Journal of Applied Crystallography Vol. 20 (1987), pp.467-474.

Google Scholar

[20] H. M. Rietveld: Journal of Applied Crystallography Vol. 2 (1969), pp.65-71.

Google Scholar