[1]
S. Kobayashi, S. Yamaji, Analytical Prediction of Hydrolysis Behavior of Tricalcium Phosphate/Poly-L-Lactic Acid composites in Simulated Body Environment, submitted to Advanced Composite Materials.
DOI: 10.1080/09243046.2013.844902
Google Scholar
[2]
C.C.P.M. Verheyen, J.R. de Wijn, C.A. van Blitterswijk, K. de Groot, Evaluation of hydroxyapatite/poly(l-lactide) composites: Mechanical behavior, J. Biomed. Mater. Res. 16 (1992) 1277-1290.
DOI: 10.1002/jbm.820261003
Google Scholar
[3]
Y. Shikinami, M. Okuno, Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics, Biomaterials. 20 (1999) 859-877.
DOI: 10.1016/s0142-9612(98)00241-5
Google Scholar
[4]
Y. Shikinami, M. Okuno, Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly l-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials. 22 (2001) 3197-3211.
DOI: 10.1016/s0142-9612(01)00072-2
Google Scholar
[5]
T. Furukawa, Y. Matsusue, T. Yasunaga, Y. Shikinami, M. Okuno, T. Nakamura, Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (l-lactide) composite rods for internal fixation of bone fractures. Biomaterials. 21 (2000) 889-898.
DOI: 10.1016/s0142-9612(99)00232-x
Google Scholar
[6]
S. Hasegawa, S. Ishii, J. Tamura, T. Furukawa, M. Neo, T. Matsusue, Y. Shikinami, M. Okuno, T. Nakamura, A 5–7 year in vivo study of high-strength hydroxyapatite/poly( l-lactide) composite rods for the internal fixation of bone fractures. Biomaterials. 27 (2006).
DOI: 10.1016/j.biomaterials.2005.09.003
Google Scholar
[7]
M. Kikuchi, Y. Suestugu, J. Tanaka, M. Akao, Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J. Mater. Sci. Mater. Medicine. 8 (1997) 361-364.
Google Scholar
[8]
M. Kikuchi, J. Tanaka, T. Ariga, Y. Tashiro, Mechanical Strength Changes of β-Tricalcium Phosphate-Copolymerized Poly-L-Lactide Composites in Physiological Saline. Inorganic Mater. 5 (1998) 493-497 (in Japanese).
Google Scholar
[9]
A.A. Ignatius, P. Augat, L.E. Claes, Degradation behavior of composite pins made of tricalcium phosphate and poly(L, DL-lactide). J. Biomater. Sci. Polymer Edn. 12 (2001) 185-194.
DOI: 10.1163/156856201750180915
Google Scholar
[10]
S. Kobayashi, K. Sakamoto, "Experimental and Analytical Characterization of b-Tricalcium Phosphate Particle Reinforced Poly-L-Lactide Composites, JSME Int. J. A. 49 (2006), 314-320.
DOI: 10.1299/jsmea.49.314
Google Scholar
[11]
S. Kobayashi, S. Yamadi, Strain rate dependency of mechanical properties of TCP/PLLA composites after immersion in simulated body environments, Compos. Sci. Technol. 70 (2010) 1820-1825.
DOI: 10.1016/j.compscitech.2010.06.008
Google Scholar
[12]
G.J. Weng, Some elastic properties of reinforced solids with special reference to isotropic ones containing spherical inclusions, Int. J. Engng. Sci. 22(1984) 845-856.
DOI: 10.1016/0020-7225(84)90033-8
Google Scholar
[13]
C.L. Chow, J. Wang, An anistropic theory of elasticity for continuum damage mechanics, Int. J. Fracture, 33 (1987), 3-16.
Google Scholar
[14]
F.C. Wong, A. Ait-Kadi, Analysis of particulate composite behaviour based on non-linear elasticity and modulus degradation theory, J. Applied Polymer Sci. 55 (1995) 263-278.
Google Scholar