[1]
A. Ballo, H. Agheli, J. Lausmaa, P. Thomsen, S. Petronis, Nanostructured model implants for in vivo studies: influence of well-defined nanotopography on de novo bone formation on titanium implants, 6 (2011) 3415-28.
DOI: 10.2147/ijn.s25867
Google Scholar
[2]
A. Wenneberg, T. Albrektsson, On Implant Surfaces: A Review of Current Knowledge and Opinions, Int J Oral Maxillofac Implants, 25(1) (2010) 63-74.
Google Scholar
[3]
P. Mesquita, P. de Sousa Gomes, P. Sampaio, G. Juodzbalys, A. Afonso, M.H. Fernandes, Surface Properties and Osteoblastic Cytocompatibility of Two Blasted and Acid-Etched Titanium Implant Systems with Distinct Microtopography, J Oral Maxillofac Res., 3(1) (2012).
DOI: 10.5037/jomr.2012.3104
Google Scholar
[4]
S. Ponader, E. Vairaktaris, P. Heinl, C.V. Wilmowsky, A. Rottmair, C. Körner, R.F. Singer, S. Holst, K.A. Schlegel, F.W. Neukam, E.I. Nkenke, Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts, J Biomed Mater Res A., 84(4) (2008).
DOI: 10.1002/jbm.a.31540
Google Scholar
[5]
G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 13 (2006) 2651-70.
DOI: 10.1016/j.biomaterials.2005.12.002
Google Scholar
[6]
M.B. Rosa, T. Albrektsson, C.E. Francischone, H.O. Schwartz Filho, A. Wennerberg, The influence of surface treatment on the implant roughness pattern, J Appl Oral Sci., 20(5) (2012) 550.
DOI: 10.1590/s1678-77572012000500010
Google Scholar
[7]
F. Luethen, R. Lange, P. Becker, J. Rychly, U. Beck, J.G. Nebe, The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells, Biomaterials, 26 (2005) 2423-40.
DOI: 10.1016/j.biomaterials.2004.07.054
Google Scholar
[8]
B. Nebe, C. Forster, H. Pommerenke, G. Fulda, D. Behrend, U. Bernewski, K.P. Schmitz, J. Rychly, Structural alterations of adhesion mediating components in cells cultured on poly-beta-hydroxy butyric acid, Biomaterials, 22 (2001) 2425-34.
DOI: 10.1016/s0142-9612(00)00430-0
Google Scholar
[9]
J.G. Nebe, F. Luethen, R. Lange, U. Beck, Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters, Macromol Biosci., 7 (2007) 567-78.
DOI: 10.1002/mabi.200600293
Google Scholar
[10]
ASTM WK39391 - Revision of F2924 - 12, Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion. Available from http: /www. astm. org/Standards/F2924. htm [Accessed June 06, 2013].
DOI: 10.1520/f2924-12
Google Scholar
[11]
K. Tajima, M. Hironaka, K. -K. Chen, Y. Nagamatsu, H. Kakigawa and Y. Kozono, Electropolishing of CP Titanium and Its Alloys in an Alcoholic Solution-based Electrolyte, Dent Mater J., 27(2) (2008) 258-65.
DOI: 10.4012/dmj.27.258
Google Scholar
[12]
J.B. Nebe, L. Muller, F. Luthen, A. Ewald, C. Bergemann, E. Conforto, F.A. Muller, Osteoblast response to biomimetically altered titanium surfaces, Acta Biomater., 4 (2008) 1985-95.
DOI: 10.1016/j.actbio.2008.05.028
Google Scholar
[13]
C. Bergemann, E. -D. Klinkenberg, F. Lüthen, A. Weidmann, R. Lange, U. Beck, R. Bader, K. Schröder and J.B. Nebe, Proliferation and migration of human osteoblasts on porous three dimensional scaffolds. Mater. Sci. Forum, 638-642 (2010) 506-11.
DOI: 10.4028/www.scientific.net/msf.638-642.506
Google Scholar