Osteoblast Ingrowth into Titanium Scaffolds Made by Electron Beam Melting

Article Preview

Abstract:

Present paper describes early findings from the study of Ti-6Al-4V scaffolds additively manufactured using electron beam melting (EBM®) technology and the influence of surface topography on the initial stages of cell acceptance. The surface topography of the components made by additive manufacturing (AM) processes including EBM® are often hard to control within the desired feature size range without post-processing. Two groups of experiments studying the behavior of human osteoblast-like cells (MG63) on samples with different surface roughness were carried out in vitro: Ti-6Al-4V samples only powder-blasted, and Ti-6Al-4V samples additionally electrochemically polished. The cell migration into powder-blasted Ti-6Al-4V 3D scaffolds with different shapes and dimensions of the lattice structures were studied.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1292-1297

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ballo, H. Agheli, J. Lausmaa, P. Thomsen, S. Petronis, Nanostructured model implants for in vivo studies: influence of well-defined nanotopography on de novo bone formation on titanium implants, 6 (2011) 3415-28.

DOI: 10.2147/ijn.s25867

Google Scholar

[2] A. Wenneberg, T. Albrektsson, On Implant Surfaces: A Review of Current Knowledge and Opinions, Int J Oral Maxillofac Implants, 25(1) (2010) 63-74.

Google Scholar

[3] P. Mesquita, P. de Sousa Gomes, P. Sampaio, G. Juodzbalys, A. Afonso, M.H. Fernandes, Surface Properties and Osteoblastic Cytocompatibility of Two Blasted and Acid-Etched Titanium Implant Systems with Distinct Microtopography, J Oral Maxillofac Res., 3(1) (2012).

DOI: 10.5037/jomr.2012.3104

Google Scholar

[4] S. Ponader, E. Vairaktaris, P. Heinl, C.V. Wilmowsky, A. Rottmair, C. Körner, R.F. Singer, S. Holst, K.A. Schlegel, F.W. Neukam, E.I. Nkenke, Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts, J Biomed Mater Res A., 84(4) (2008).

DOI: 10.1002/jbm.a.31540

Google Scholar

[5] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 13 (2006) 2651-70.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[6] M.B. Rosa, T. Albrektsson, C.E. Francischone, H.O. Schwartz Filho, A. Wennerberg, The influence of surface treatment on the implant roughness pattern, J Appl Oral Sci., 20(5) (2012) 550.

DOI: 10.1590/s1678-77572012000500010

Google Scholar

[7] F. Luethen, R. Lange, P. Becker, J. Rychly, U. Beck, J.G. Nebe, The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells, Biomaterials, 26 (2005) 2423-40.

DOI: 10.1016/j.biomaterials.2004.07.054

Google Scholar

[8] B. Nebe, C. Forster, H. Pommerenke, G. Fulda, D. Behrend, U. Bernewski, K.P. Schmitz, J. Rychly, Structural alterations of adhesion mediating components in cells cultured on poly-beta-hydroxy butyric acid, Biomaterials, 22 (2001) 2425-34.

DOI: 10.1016/s0142-9612(00)00430-0

Google Scholar

[9] J.G. Nebe, F. Luethen, R. Lange, U. Beck, Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters, Macromol Biosci., 7 (2007) 567-78.

DOI: 10.1002/mabi.200600293

Google Scholar

[10] ASTM WK39391 - Revision of F2924 - 12, Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion. Available from http: /www. astm. org/Standards/F2924. htm [Accessed June 06, 2013].

DOI: 10.1520/f2924-12

Google Scholar

[11] K. Tajima, M. Hironaka, K. -K. Chen, Y. Nagamatsu, H. Kakigawa and Y. Kozono, Electropolishing of CP Titanium and Its Alloys in an Alcoholic Solution-based Electrolyte, Dent Mater J., 27(2) (2008) 258-65.

DOI: 10.4012/dmj.27.258

Google Scholar

[12] J.B. Nebe, L. Muller, F. Luthen, A. Ewald, C. Bergemann, E. Conforto, F.A. Muller, Osteoblast response to biomimetically altered titanium surfaces, Acta Biomater., 4 (2008) 1985-95.

DOI: 10.1016/j.actbio.2008.05.028

Google Scholar

[13] C. Bergemann, E. -D. Klinkenberg, F. Lüthen, A. Weidmann, R. Lange, U. Beck, R. Bader, K. Schröder and J.B. Nebe, Proliferation and migration of human osteoblasts on porous three dimensional scaffolds. Mater. Sci. Forum, 638-642 (2010) 506-11.

DOI: 10.4028/www.scientific.net/msf.638-642.506

Google Scholar