[1]
M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Mater. 1 (2008) 30-42.
Google Scholar
[2]
N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, M. Niinomi, Experiment study on fracture fixation with low rigidity titanium alloy, J. Mater. Sci. Mater. Med. 19 (2008) 1581-1586.
DOI: 10.1007/s10856-008-3372-y
Google Scholar
[3]
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants, Progr. Mater. Sci. 54 (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[4]
M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4. 6Zr, Biomaterials 24 (2003) 2673-2683.
DOI: 10.1016/s0142-9612(03)00069-3
Google Scholar
[5]
K. Narita, M. Niinomi, M. Nakai, J. Hieda, K. Oribe, Development of thermo-mechanical processing for fabricating highly durable β-type Ti-Nb-Ta-Zr rod for use in spinal fixation devices, J. Mech. Behav. Mater. 9 (2012) 207-216.
DOI: 10.1016/j.jmbbm.2012.01.011
Google Scholar
[6]
S.J. Li, T.C. Cui, Y.L. Hao, R. Yang, Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation, Acta Biomaterialia 4 (2008) 305-317.
DOI: 10.1016/j.actbio.2007.09.009
Google Scholar
[7]
W.F. Cui, A.H. Guo, Microstructures and properties of biomedical TiNbZrFe β-titanium alloy under aging conditions, Mater. Sci. Eng. A 527 (2009) 258-262.
DOI: 10.1016/j.msea.2009.08.057
Google Scholar
[8]
Y.L. Zhou, M. Niinomi, T. Akahori, Effects of Ta content on Young's modulus and tensile properties of binary Ti–Ta alloys for biomedical applications, Mater. Sci. Eng. A 371 (2004) 283-290.
DOI: 10.1016/j.msea.2003.12.011
Google Scholar
[9]
M. Niinomi, T. Akahori, M. Nakai, In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti–Nb–Ta–Zr system beta-type titanium alloy for biomedical applications, Mater. Sci. Eng. C 28 (2008) 406-413.
DOI: 10.1016/j.msec.2007.04.028
Google Scholar
[10]
K. Narita, M. Niinomi, M. Nakai, K. Oribe, Heterogeneous a phase precipitation and peculiar aging strengthening in biomedical b-type Ti-Nb-Ta-Zr alloy having vertical structure, J. Japan Inst. Metals 75 (2011) 198-206.
DOI: 10.2320/jinstmet.75.198
Google Scholar
[11]
X.H. Min, K. Tsuzaki, S. Emura, K. Tsuchiya, Enhancement of uniform elongation in high strength Ti–Mo based alloys by combination of deformation modes, Mater. Sci. Eng. A 528 (2011) 4569-4578.
DOI: 10.1016/j.msea.2011.02.071
Google Scholar
[12]
S. Malinov, W. Sha, Z. Guo, Application of artificial neural network for prediction of time–temperature–transformation diagrams in titanium alloys, Mater. Sci. Eng. A 283 (2000) 1-10.
DOI: 10.1016/s0921-5093(00)00746-2
Google Scholar
[13]
T. Ogura, S. Hirosawa, T. Sato, Quantitative characterization of precipitate free zones in Al–Zn–Mg (–Ag) alloys by microchemical analysis and nanoindentation measurement, Sci. Tech. Adv. Mater. 5(2004)491-496.
DOI: 10.1016/j.stam.2004.02.007
Google Scholar