[1]
K. Kuroda and M. Okido, HAp coating on titanium implants using hydro-processing and evaluation of their osteoconductivity, Bioinorg. Chem. Applications, 2012(2012), ID 730693.
DOI: 10.1155/2012/730693
Google Scholar
[2]
H. -J. Song, S. -H. Park, S. -H. Jeong and Y. -J. Park, Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes, J. Mater. Proc. Technol., 209(2009), 864-870.
DOI: 10.1016/j.jmatprotec.2008.02.055
Google Scholar
[3]
X. Cui, H. -M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo and T. Nakamura, Preparation of bioactive titania films on titanium metal via anodic oxidation, Dental Mater., 25(2009), 80-86.
DOI: 10.1016/j.dental.2008.04.012
Google Scholar
[4]
D. Yamamoto, T. Iida, K. Kuroda, R. Ichino M. Okido and A. Seki, Formation of amorphous TiO2 film on Ti using anodizing in concentrated H3PO4 aqueous solution and its osteoconductivity, Mater. Trans., 53(2012), 508-512.
DOI: 10.2320/matertrans.m2011234
Google Scholar
[5]
D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino M. Okido and A. Seki, Osteoconductivity and hydrophilicity of TiO2 coatings on Ti substrates prepared by different oxidizing processes, Bioinorg. Chem. Appl., 2012(2012), ID495218.
DOI: 10.1155/2012/495218
Google Scholar
[6]
D. Yamamoto, T. Iida, K. Arii, K. Kuroda, R. Ichino M. Okido and A. Seki, Surface hydrophilicity and osteoconductivity of anodized Ti in aqueous solutions with various solute ions, Mater. Trans., 53(2012), 1956-(1961).
DOI: 10.2320/matertrans.m2012082
Google Scholar
[7]
K. L. Kilpadi, P. L. Chang, and S. L. Bellis, Hydroxylapatite binds more serum proteins, Purified integrins, and osteoblast precursor cells than titanium or steel, J. Biomed. Mater. Res. A, 57(2001), 258-267.
DOI: 10.1002/1097-4636(200111)57:2<258::aid-jbm1166>3.0.co;2-r
Google Scholar
[8]
F. Rupp, L. Scheideler, N. Olshanska, M. de Wild, M. Wieland, and J. Geis-Gerstorfer, Enhancing Surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces, J. Biomed. Mater. Res. A, 76A(2006).
DOI: 10.1002/jbm.a.30518
Google Scholar
[9]
K. Das, S. Bose and A. Bandyopadhyay, Surface modifications and cell-materials interactions with anodized Ti, Acta Biomater., 3(2007), 573-585.
DOI: 10.1016/j.actbio.2006.12.003
Google Scholar
[10]
Y. Arima and H. Iwata, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers, Biomater., 28(2007), 3074- 3082.
DOI: 10.1016/j.biomaterials.2007.03.013
Google Scholar
[11]
M. E. Simonsen, Z. Li and E. G. Sogaard, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol-gel TiO2 film, Appl. Surf. Sci., 255(2009), 8054-8062.
DOI: 10.1016/j.apsusc.2009.05.013
Google Scholar
[12]
K. -X. Zhang, W. Wang, J. -L. Hou, J. -H. Zhao, Y. Zhang and Y. -C. Fang, Oxygen plasma induced hydrophilicity of TiO2 thin films, Vacuum, 85(2011), 990-993.
DOI: 10.1016/j.vacuum.2011.02.006
Google Scholar
[13]
J. Takebe, S. Ito, S. Miura, K. Miyata and K. Ishibashi, Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles, " Mater. Sci. Eng. C, 32(2012).
DOI: 10.1016/j.msec.2011.09.011
Google Scholar