Challenges and Opportunities in Electrochemically Coating Calcium Phosphate on Magnesium Alloys for Biodegradable Implant Applications

Article Preview

Abstract:

Magnesium alloys are attractive for use as biodegradable materials for temporary implant applications. However, the high localized degradation of magnesium alloys in physiological conditions is a major concern, which can affect the mechanical integrity of the implant during service. Calcium phosphate (CaP) coating is a suitable method to delay the initiation of localized attack in magnesium alloys. This paper will discuss the challenges and opportunities in electrochemically coating CaP on magnesium and its magnesium alloys for biodegradable implant applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1269-1273

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit: Current Opinion in Solid State and Materials Science 12 (2008), p.63.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[2] J. Vormann: Molecular Aspects of Medicine 24 (2003), p.27.

Google Scholar

[3] F. Wolf, A. Cittadini: Molecular Aspects of Medicine 24 (2003), p.3.

Google Scholar

[4] M.B. Kannan, R.K.S. Raman: Biomaterials 29 (2008), p.2306.

Google Scholar

[5] R. Walter, M.B. Kannan: Materials Letters 64 (2011) p.748.

Google Scholar

[6] G. Song: Corrosion Science 49 (2007), p.1696.

Google Scholar

[7] M.B. Kannan: Materials Letter 64 (2010), p.739.

Google Scholar

[8] M.B. Kannan, R.K.S. Raman, Journal of Biomedical Materials Research Part A 93A (2010) p.1050.

Google Scholar

[9] A. Alabbasi, S. Liyanaarachchi, M.B. Kannan: Thin Solid Films 520 (2012), p.6841.

Google Scholar

[10] B.E. Tucker, G.H. Nancollas, C.M. Cottell, R. CY. Auyeung, M. Spector: Biomaterials 17 (1996) p.631.

Google Scholar

[11] K. Ishikawa, Y. Miyamoto, M. Nagayama, K. Asaoka: Journal of Biomedical Materials Research 38 (1997) p.129.

Google Scholar

[12] D. Shi: Biomaterials and Tissue Engineering, Springer-Verlang Berlin Heidelberg, (2004).

Google Scholar

[13] R. Narayanan, S.K. Seshadri: Materials Chemistry and Physics 106 (2007), p.406.

Google Scholar

[14] H. Benhayoune: Materials Characterization 59 (2008) p.129.

Google Scholar

[15] L. Yan, Y. Leng, L.T. Weng: Biomaterials 24 (2003), p.2585.

Google Scholar

[16] M. Hamdi, A. Ide-Ektessabi: Surface and Coatings Technology 163-164 (2003), p.362.

Google Scholar

[17] S.J. Ding: Biomaterials 24 (2003), p.4233.

Google Scholar

[18] M.F. Hsieh, L.H. Perng, T.S. Chin: Materials Chemistry and Physics 74 (2002), p.245.

Google Scholar

[19] W.H. Song, Y.K. Jun, Y. Han, S.H. Hong: Biomaterials 25 (2004), p.3341.

Google Scholar

[20] X. Meng, T.Y. Kwon, Y. Yang, J.L. Ong, K.H. Kim: Journal of Biomedical Materials Research Part B Applied Biomaterials 78 (2006), p.373.

Google Scholar

[21] M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, J.H. Evans: Journal of Sol-Gel Science and Technology 21 (2001), p.39.

DOI: 10.1023/a:1011201414651

Google Scholar

[22] S.K. Yen, M.C. Kuo, Materials Science and Engineering C 20 (2002), p.153.

Google Scholar

[23] M.B. Kannan: Journal of Biomedical Materials Research: Part A 101A (2013), p.1248.

Google Scholar

[24] J. Redepenning, T. Schlessinger, S. Burnham, L. Lippiello, J. Miyano: Journal of Biomedical Materials Research 30 (1996), p.287.

Google Scholar

[25] M.B. Kannan: O. Wallipa: Materials Science and Engineering C 33 (2013), p.675.

Google Scholar

[26] M.B. Kannan: Materials Letter 76 (2012), p.109.

Google Scholar