[1]
F. Tamimi, J. Torres, D. Bassett, J. Barralet, E.L. Cabarcos, Resorption of monetite granules in alveolar bone defects in human patients, Biomaterials 31 (2010) 2762-2769.
DOI: 10.1016/j.biomaterials.2009.12.039
Google Scholar
[2]
LeGeros RZ, Properties of osteoconductive biomaterials: calcium phosphates, Clin Orthop Relat Res 395 (2002) 81–98.
DOI: 10.1097/00003086-200202000-00009
Google Scholar
[3]
O. Suzuki, M. Nakamura, Y. Miyasaka, M. Kagayama, M. Sakurai, Bone formation on synthetic precursors of hydroxyapatite, Tohoku J. Exp. Med. 164 (1991) 37-50.
DOI: 10.1620/tjem.164.37
Google Scholar
[4]
O. Suzuki, Octacalcium phosphate (OCP)-based bone substitute materials, Jpn. Dent. Sci. Rev. 49 (2013) 58-71.
DOI: 10.1016/j.jdsr.2013.01.001
Google Scholar
[5]
F. Barrère, C.M. van der Valk, R.A. Dalmeijer, G. Meijer, C.A. van Blitterswijk, K. de Groot, P. Layrolle, Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res A. 66 (2003) 779-788.
DOI: 10.1002/jbm.a.10454
Google Scholar
[6]
O. Suzuki, S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, R. Kamijo, Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite, Biomaterials 27 (2006) 2671-2681.
DOI: 10.1016/j.biomaterials.2005.12.004
Google Scholar
[7]
T. Anada, T. Kumagai, Y. Honda, T. Masuda, R. Kamijo, S. Kamakura, N. Yoshihara, T. Kuriyagawa, H. Shimauchi, O. Suzuki, Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells, Tissue Eng. Part A 14 (2008).
DOI: 10.1089/ten.tea.2007.0339
Google Scholar
[8]
W.E. Brown, Crystal growth of bone mineral, Clin. Orthop. Relat. Res. 44 (1966) 205-220.
Google Scholar
[9]
W.E. Brown, J.P. Smith, J.R. Lehr, A.W. Frazier, Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite, Nature 196 (1962) 1050–1055.
DOI: 10.1038/1961050a0
Google Scholar
[10]
J.L. Meyer, E.D. Eanes, A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate, Calcif. Tiss. Res. 25 (1978) 209–216.
DOI: 10.1007/bf02010771
Google Scholar
[11]
W.J. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H. Bomans, P.M. Frederik, J. Laven, P. van der Schoot, B. Aichmayer, G. de With, J.J. DeYoreo, N.A. Sommerdijk, Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate, Nat. Commun. 4 (2013).
DOI: 10.1038/ncomms2490
Google Scholar
[12]
M. Mathew, W. Brown, L. Schroeder, B. Dickens, Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8(HPO4)2(PO4)4·5H2O, J. Crystallogr. Spectrosc. Res. 18 (1988) 235–250.
DOI: 10.1007/bf01194315
Google Scholar
[13]
O. Suzuki, H. Yagishita, T. Amano, T. Aoba, Reversible structural changes of octacalcium phosphate and labile acid phosphate, J. Dent. Res. 74 (1995) 1764–1769.
DOI: 10.1177/00220345950740110801
Google Scholar
[14]
N. Miyatake, K.N. Kishimoto, T. Anada, H. Imaizumi, E. Itoi, O. Suzuki, Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics, Biomaterials 30 (2009) 1005-1014.
DOI: 10.1016/j.biomaterials.2008.10.058
Google Scholar
[15]
O. Suzuki, Octacalcium phosphate: osteoconductivity and crystal chemistry, Acta Biomater. 6 (2010) 3379-3387.
DOI: 10.1016/j.actbio.2010.04.002
Google Scholar
[16]
H. Imaizumi, M. Sakurai, O. Kashimoto, T. Kikawa, O. Suzuki, Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow, Calcif. Tissue Int. 78 (2006) 45–54.
DOI: 10.1007/s00223-005-0170-0
Google Scholar
[17]
Y. Sasano, S. Kamakura, M. Nakamura, O. Suzuki, Mizoguchi I, Akita H, Kagayama M. Subperiosteal implantation of octacalcium phosphate (OCP) stimulates both chondrogenesis and osteogenesis in the tibia, but only osteogenesis in the parietal bone of a rat. Anat. Rec. 242 (1995).
DOI: 10.1002/ar.1092420106
Google Scholar
[18]
F.C. Driessens, J.W. van Dijk, J.M. Borggreven, Biological calcium phosphates and their role in the physiology of bone and dental tissues I. Composition and solubility of calcium phosphates, Calcif. Tissue Res. 26 (1978) 127–137.
DOI: 10.1007/bf02013247
Google Scholar
[19]
M. Takami, A. Mochizuki, A. Yamada, K. Tachi, B. Zhao, Y. Miyamoto, T. Anada, Y. Honda, T. Inoue, M. Nakamura, and O. Suzuki, and R. Kamijo, Osteoclast differentiation induced by synthetic octacalcium phosphate through RANKL expression in osteoblasts, Tissue Eng. Part A 15 (2009).
DOI: 10.1089/ten.tea.2009.0065
Google Scholar
[20]
X. Wang, T. Suzawa, T. Miyauchi, B. Zhao, R. Yasuhara, T. Anada, M. Nakamura, O. Suzuki, R. Kamijo, Synthetic octacalcium phosphate-enhanced reparative dentine formation via induction of odontoblast differentiation, J. Tissue Eng. Regen. Med. 2013 in press.
DOI: 10.1002/term.1669
Google Scholar
[21]
I. Shibuya, K. Yoshimura, Y. Miyamoto, A. Yamada, M. Takami, T. Suzawa, D. Suzuki, N. Ikumi, F. Hiura, T. Anada, O. Suzuki, R. Kamijo, Octacalcium phosphate suppresses chondrogenic differentiation of ATDC5 cells, Cell Tissue Res. 352 (2013).
DOI: 10.1007/s00441-012-1548-8
Google Scholar
[22]
O. Suzuki, M. Nakamura, Y. Miyasaka, M. Kagayama, M. Sakurai, Maclura pomifera agglutinin-binding glycoconjugates on converted apatite from synthetic octacalcium phosphate implanted into subperiosteal region of mouse calvaria, Bone Miner. 20 (1993).
DOI: 10.1016/s0169-6009(08)80024-4
Google Scholar
[23]
O. Suzuki, H. Yagishita, M. Yamazaki, T. Aoba, Adsorption of bovine serum albumin onto octacalcium phosphate and its hydrolyzates, Cells Mater. 5 (1995) 45-54.
Google Scholar
[24]
Y. Shiwaku, T. Anada, H. Yamazaki, Y. Honda, S. Morimoto, K. Sasaki, O. Suzuki, Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates, Acta Biomater. 8 (2012).
DOI: 10.1016/j.actbio.2012.07.041
Google Scholar
[25]
Y. Shiwaku, Y. Honda, T. Anada, S. Morimoto, T. Masuda, K. Sasaki, O. Suzuki, Analysis of physicochemical properties of octacalcium phosphate prepared by hydrolysis and co-precipitation with fluoride ions, J Ceram. Soc. Japan 118 (2010) 1-4.
DOI: 10.2109/jcersj2.118.402
Google Scholar
[26]
H. Kaneko, J. Kamiie, H. Kawakami, T. Anada, Y. Honda, N. Shiraishi, S. Kamakura, T. Terasaki, H. Shimauchi, O. Suzuki, Proteome analysis of rat serum proteins adsorbed onto synthetic octacalcium phosphate crystals, Anal Biochem 418 (2011).
DOI: 10.1016/j.ab.2011.07.022
Google Scholar
[27]
T. Kodama, T. Goto, T. Ishibe, S. Kobayashi, T. Takahashi, Apolipoprotein E stimulates bone formation on titanium in vitro, Asian J. Oral Maxillofac. Surg. 19 (2007) 96–100.
DOI: 10.1016/s0915-6992(07)80023-9
Google Scholar
[28]
D.C. Mangham, D.J. Scoones, M.T. Drayson, Complement and the recruitment of mononuclear osteoclasts, J. Clin. Pathol. 46 (1993) 517–521.
DOI: 10.1136/jcp.46.6.517
Google Scholar