Octacalcium Phosphate: A Potential Scaffold Material for Controlling Activity of Bone-Related Cells In Vitro

Article Preview

Abstract:

We have previously established a wet synthesis method of octacalcium phosphate (OCP) in a relatively large scale and found that OCP enhances bone formation more than synthetic hydroxyapatite (HA) if implanted onto bone surface and various bone defects. The present paper reviews, based on our studies, as to how OCP controls in vitro cellular activities of bone-related cells, such as bone marrow stromal cells, and how OCP enhances bone repair in critical sized bone defect experimentally created in animal models. OCP tends to progressively convert to HA in culture media and in rat calvaria defects. OCP is capable of enhancing in vitro osteoblast differentiation and osteoclast formation in the presence of osteoblasts. Recent our studies also indicated that OCP enhances odontoblast differentiation while suppresses chondrogenic differentiation. The physicochemical properties, such as chemical composition and adsorption affinity of serum proteins, vary depending on the advancement of conversion from OCP to HA, which suggests that the change on the surface property during the conversion of OCP may affect the cellular responses in vitro and tissue reaction in vivo. OCP could be used as a scaffold material that can control the activity of bone-related cells.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1366-1371

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Tamimi, J. Torres, D. Bassett, J. Barralet, E.L. Cabarcos, Resorption of monetite granules in alveolar bone defects in human patients, Biomaterials 31 (2010) 2762-2769.

DOI: 10.1016/j.biomaterials.2009.12.039

Google Scholar

[2] LeGeros RZ, Properties of osteoconductive biomaterials: calcium phosphates, Clin Orthop Relat Res 395 (2002) 81–98.

DOI: 10.1097/00003086-200202000-00009

Google Scholar

[3] O. Suzuki, M. Nakamura, Y. Miyasaka, M. Kagayama, M. Sakurai, Bone formation on synthetic precursors of hydroxyapatite, Tohoku J. Exp. Med. 164 (1991) 37-50.

DOI: 10.1620/tjem.164.37

Google Scholar

[4] O. Suzuki, Octacalcium phosphate (OCP)-based bone substitute materials, Jpn. Dent. Sci. Rev. 49 (2013) 58-71.

DOI: 10.1016/j.jdsr.2013.01.001

Google Scholar

[5] F. Barrère, C.M. van der Valk, R.A. Dalmeijer, G. Meijer, C.A. van Blitterswijk, K. de Groot, P. Layrolle, Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res A. 66 (2003) 779-788.

DOI: 10.1002/jbm.a.10454

Google Scholar

[6] O. Suzuki, S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, R. Kamijo, Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite, Biomaterials 27 (2006) 2671-2681.

DOI: 10.1016/j.biomaterials.2005.12.004

Google Scholar

[7] T. Anada, T. Kumagai, Y. Honda, T. Masuda, R. Kamijo, S. Kamakura, N. Yoshihara, T. Kuriyagawa, H. Shimauchi, O. Suzuki, Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells, Tissue Eng. Part A 14 (2008).

DOI: 10.1089/ten.tea.2007.0339

Google Scholar

[8] W.E. Brown, Crystal growth of bone mineral, Clin. Orthop. Relat. Res. 44 (1966) 205-220.

Google Scholar

[9] W.E. Brown, J.P. Smith, J.R. Lehr, A.W. Frazier, Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite, Nature 196 (1962) 1050–1055.

DOI: 10.1038/1961050a0

Google Scholar

[10] J.L. Meyer, E.D. Eanes, A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate, Calcif. Tiss. Res. 25 (1978) 209–216.

DOI: 10.1007/bf02010771

Google Scholar

[11] W.J. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H. Bomans, P.M. Frederik, J. Laven, P. van der Schoot, B. Aichmayer, G. de With, J.J. DeYoreo, N.A. Sommerdijk, Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate, Nat. Commun. 4 (2013).

DOI: 10.1038/ncomms2490

Google Scholar

[12] M. Mathew, W. Brown, L. Schroeder, B. Dickens, Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8(HPO4)2(PO4)4·5H2O, J. Crystallogr. Spectrosc. Res. 18 (1988) 235–250.

DOI: 10.1007/bf01194315

Google Scholar

[13] O. Suzuki, H. Yagishita, T. Amano, T. Aoba, Reversible structural changes of octacalcium phosphate and labile acid phosphate, J. Dent. Res. 74 (1995) 1764–1769.

DOI: 10.1177/00220345950740110801

Google Scholar

[14] N. Miyatake, K.N. Kishimoto, T. Anada, H. Imaizumi, E. Itoi, O. Suzuki, Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteristics, Biomaterials 30 (2009) 1005-1014.

DOI: 10.1016/j.biomaterials.2008.10.058

Google Scholar

[15] O. Suzuki, Octacalcium phosphate: osteoconductivity and crystal chemistry, Acta Biomater. 6 (2010) 3379-3387.

DOI: 10.1016/j.actbio.2010.04.002

Google Scholar

[16] H. Imaizumi, M. Sakurai, O. Kashimoto, T. Kikawa, O. Suzuki, Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow, Calcif. Tissue Int. 78 (2006) 45–54.

DOI: 10.1007/s00223-005-0170-0

Google Scholar

[17] Y. Sasano, S. Kamakura, M. Nakamura, O. Suzuki, Mizoguchi I, Akita H, Kagayama M. Subperiosteal implantation of octacalcium phosphate (OCP) stimulates both chondrogenesis and osteogenesis in the tibia, but only osteogenesis in the parietal bone of a rat. Anat. Rec. 242 (1995).

DOI: 10.1002/ar.1092420106

Google Scholar

[18] F.C. Driessens, J.W. van Dijk, J.M. Borggreven, Biological calcium phosphates and their role in the physiology of bone and dental tissues I. Composition and solubility of calcium phosphates, Calcif. Tissue Res. 26 (1978) 127–137.

DOI: 10.1007/bf02013247

Google Scholar

[19] M. Takami, A. Mochizuki, A. Yamada, K. Tachi, B. Zhao, Y. Miyamoto, T. Anada, Y. Honda, T. Inoue, M. Nakamura, and O. Suzuki, and R. Kamijo, Osteoclast differentiation induced by synthetic octacalcium phosphate through RANKL expression in osteoblasts, Tissue Eng. Part A 15 (2009).

DOI: 10.1089/ten.tea.2009.0065

Google Scholar

[20] X. Wang, T. Suzawa, T. Miyauchi, B. Zhao, R. Yasuhara, T. Anada, M. Nakamura, O. Suzuki, R. Kamijo, Synthetic octacalcium phosphate-enhanced reparative dentine formation via induction of odontoblast differentiation, J. Tissue Eng. Regen. Med. 2013 in press.

DOI: 10.1002/term.1669

Google Scholar

[21] I. Shibuya, K. Yoshimura, Y. Miyamoto, A. Yamada, M. Takami, T. Suzawa, D. Suzuki, N. Ikumi, F. Hiura, T. Anada, O. Suzuki, R. Kamijo, Octacalcium phosphate suppresses chondrogenic differentiation of ATDC5 cells, Cell Tissue Res. 352 (2013).

DOI: 10.1007/s00441-012-1548-8

Google Scholar

[22] O. Suzuki, M. Nakamura, Y. Miyasaka, M. Kagayama, M. Sakurai, Maclura pomifera agglutinin-binding glycoconjugates on converted apatite from synthetic octacalcium phosphate implanted into subperiosteal region of mouse calvaria, Bone Miner. 20 (1993).

DOI: 10.1016/s0169-6009(08)80024-4

Google Scholar

[23] O. Suzuki, H. Yagishita, M. Yamazaki, T. Aoba, Adsorption of bovine serum albumin onto octacalcium phosphate and its hydrolyzates, Cells Mater. 5 (1995) 45-54.

Google Scholar

[24] Y. Shiwaku, T. Anada, H. Yamazaki, Y. Honda, S. Morimoto, K. Sasaki, O. Suzuki, Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates, Acta Biomater. 8 (2012).

DOI: 10.1016/j.actbio.2012.07.041

Google Scholar

[25] Y. Shiwaku, Y. Honda, T. Anada, S. Morimoto, T. Masuda, K. Sasaki, O. Suzuki, Analysis of physicochemical properties of octacalcium phosphate prepared by hydrolysis and co-precipitation with fluoride ions, J Ceram. Soc. Japan 118 (2010) 1-4.

DOI: 10.2109/jcersj2.118.402

Google Scholar

[26] H. Kaneko, J. Kamiie, H. Kawakami, T. Anada, Y. Honda, N. Shiraishi, S. Kamakura, T. Terasaki, H. Shimauchi, O. Suzuki, Proteome analysis of rat serum proteins adsorbed onto synthetic octacalcium phosphate crystals, Anal Biochem 418 (2011).

DOI: 10.1016/j.ab.2011.07.022

Google Scholar

[27] T. Kodama, T. Goto, T. Ishibe, S. Kobayashi, T. Takahashi, Apolipoprotein E stimulates bone formation on titanium in vitro, Asian J. Oral Maxillofac. Surg. 19 (2007) 96–100.

DOI: 10.1016/s0915-6992(07)80023-9

Google Scholar

[28] D.C. Mangham, D.J. Scoones, M.T. Drayson, Complement and the recruitment of mononuclear osteoclasts, J. Clin. Pathol. 46 (1993) 517–521.

DOI: 10.1136/jcp.46.6.517

Google Scholar