[1]
X. Liu, P.K. Chub, C. Ding, Surface modification of titanium, titanium alloys and related materials for biomedical applications, Materials Science and Engineering. R 47 (2004) 49-121.
DOI: 10.1016/j.mser.2004.11.001
Google Scholar
[2]
W. E. Yang, H. H. Huang, Improving the biocompatibility of titanium surface through formation of a TiO2 nano-mesh layer, Thin Solid Films. 518 (2010) 7545-7550.
DOI: 10.1016/j.tsf.2010.05.045
Google Scholar
[3]
L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials. 25 (2004) 2867–2875.
DOI: 10.1016/j.biomaterials.2003.09.048
Google Scholar
[4]
J. Akedo, M. Ichiki, K. Kikuchi, R. Maeda, Jet molding system for realization of three-dimensional micro-structures, Sens. Actuators A. 69 (1998) 106-112.
DOI: 10.1016/s0924-4247(98)00059-4
Google Scholar
[5]
M. Tsukamoto, T. Fujihara, N. Aba, S. Miyake, M. Katto, T. Nakayama, J. Akedo, Hydroxyapatite Coating on Titanium Plate with an Ultra Fine Particle Beam, Jpn. J. Appl. Phys. 42 (2003) L 120-L 122.
DOI: 10.1143/jjap.42.l120
Google Scholar
[6]
J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, T. J. Webster, Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features, Acta Biomater. 4 (2008) 192-201.
DOI: 10.1016/j.actbio.2007.07.008
Google Scholar
[7]
M. Goto, T. Tsukahara, K. Sato, T. Kitamori, Micro- and nanometer-scale patterned surface in a microchannel for cell culture in microfluidic devices, Anal Bioanal Chem. 390 (2008) 817-823.
DOI: 10.1007/s00216-007-1496-4
Google Scholar
[8]
K. Matsuzaka, X.F. Walboomers, J.E. de Ruijter, J.A. Jansen, The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro, Biomaterials. 20 (1999) 1293-1301.
DOI: 10.1016/s0142-9612(99)00029-0
Google Scholar
[9]
T. Shinonaga, M. Tsukamoto, S. Maruyama, N. Matsushita, T. Wada, X. Wang, H. Honda, M. Fujita, N. Abe, A. Inoue, Transformation of Surface Morphology by Femtosecond Laser Irradiation for Improving Bioactivity of the Ti-based Bulk Metallic Glass, The Review of Laser Engineering. 39 5 (2011).
DOI: 10.2184/lsj.39.347
Google Scholar
[10]
M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, M. Fujita, Periodic microstructures produced by femtosecond laser irradiation on titanium plate, Vacuum. 80 (2006) 1346-1350.
DOI: 10.1016/j.vacuum.2006.01.016
Google Scholar
[11]
M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, N. Abe, Microstructures formation on titanium plate by femtosecond laser ablation, J. Phys. Conf. Ser. 59 (2007) 666-669.
DOI: 10.1088/1742-6596/59/1/140
Google Scholar
[12]
K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation, Phys. Rev. B 82. (2010) 165417-1 - 165417-5.
DOI: 10.1103/physrevb.82.165417
Google Scholar
[13]
S.K. Das, D. Dufft, A. Rosenfeld, J. Bonse, Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces, J. Appl. Phys. 105 (2009) 084912-1 - 084912-5.
DOI: 10.1063/1.3117509
Google Scholar
[14]
D. Dufft, A. Rosenfeld, S.K. Das, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO, J. Appl. Phys. 105 (2009) 034908-1 - 034908-9.
DOI: 10.1063/1.3074106
Google Scholar
[15]
N. Yasumaru, K. Miyazaki, J. Kiuchi, Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC, Appl. Phys. A: Mater. Sci. Process. 76 (2003) 983-985.
DOI: 10.1007/s00339-002-1979-2
Google Scholar
[16]
T. Shinonaga, M. Tsukamoto, N. Ryousuke, Y. Ito, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, X. Guoqiang, N. Abe, Formation of Periodic Nanostructures on Titanium dioxide film by femtosecond laser irradiation, Trans. of JWRI. 41 1 (2012).
DOI: 10.2351/1.5062529
Google Scholar