Biocompatibility of Titanium Dioxide Film Modified by Femtosecond Laser Irradiation

Article Preview

Abstract:

Titanium (Ti) is one of the most widely used for biomaterials, because of its excellent anti-corrosion and high mechanical properties. In addion to these properies, the bioactivity of Ti is required. Recently, coating of the titanium dioxide (TiO2) film on Ti plate surface is useful methods to obtain biocompatibility of Ti plate. If periodic nanostructures were formed on the film surface, direction of cell spreading might be controlled due to grooves direction. Then, femtosecond laser is one of the useful tools of periodic nanostructures formation. Peiriod of periodic nanostructures might be varied by changing the laser wavelength. In the experiments, the film was formed on Ti plate with an aerosol beam which was composed of submicron size TiO2 particles and helium gas. The film was irradiated with the femtosecond laser. Laser wavelengths of the laser was at 1044, 775 and 388 nm, respectively. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film by femtosecond laser irradiation at 1044, 775 and 388 nm, respectively. The period of the periodic nanostructures on the film produced by femtosecond laser irradiation at 1044, 775 and 388 nm was about 350, 230 and 130 nm, respectively. In the cell test, cell spreading along the grooves of the periodic nanostructures was observed although it was not done for the film without the periodic nanostructures. These results suggested that direction of cell spreading could be controlled by the periodic nanostructures formation

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1377-1382

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Liu, P.K. Chub, C. Ding, Surface modification of titanium, titanium alloys and related materials for biomedical applications, Materials Science and Engineering. R 47 (2004) 49-121.

DOI: 10.1016/j.mser.2004.11.001

Google Scholar

[2] W. E. Yang, H. H. Huang, Improving the biocompatibility of titanium surface through formation of a TiO2 nano-mesh layer, Thin Solid Films. 518 (2010) 7545-7550.

DOI: 10.1016/j.tsf.2010.05.045

Google Scholar

[3] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials. 25 (2004) 2867–2875.

DOI: 10.1016/j.biomaterials.2003.09.048

Google Scholar

[4] J. Akedo, M. Ichiki, K. Kikuchi, R. Maeda, Jet molding system for realization of three-dimensional micro-structures, Sens. Actuators A. 69 (1998) 106-112.

DOI: 10.1016/s0924-4247(98)00059-4

Google Scholar

[5] M. Tsukamoto, T. Fujihara, N. Aba, S. Miyake, M. Katto, T. Nakayama, J. Akedo, Hydroxyapatite Coating on Titanium Plate with an Ultra Fine Particle Beam, Jpn. J. Appl. Phys. 42 (2003) L 120-L 122.

DOI: 10.1143/jjap.42.l120

Google Scholar

[6] J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, T. J. Webster, Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features, Acta Biomater. 4 (2008) 192-201.

DOI: 10.1016/j.actbio.2007.07.008

Google Scholar

[7] M. Goto, T. Tsukahara, K. Sato, T. Kitamori, Micro- and nanometer-scale patterned surface in a microchannel for cell culture in microfluidic devices, Anal Bioanal Chem. 390 (2008) 817-823.

DOI: 10.1007/s00216-007-1496-4

Google Scholar

[8] K. Matsuzaka, X.F. Walboomers, J.E. de Ruijter, J.A. Jansen, The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro, Biomaterials. 20 (1999) 1293-1301.

DOI: 10.1016/s0142-9612(99)00029-0

Google Scholar

[9] T. Shinonaga, M. Tsukamoto, S. Maruyama, N. Matsushita, T. Wada, X. Wang, H. Honda, M. Fujita, N. Abe, A. Inoue, Transformation of Surface Morphology by Femtosecond Laser Irradiation for Improving Bioactivity of the Ti-based Bulk Metallic Glass, The Review of Laser Engineering. 39 5 (2011).

DOI: 10.2184/lsj.39.347

Google Scholar

[10] M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, M. Fujita, Periodic microstructures produced by femtosecond laser irradiation on titanium plate, Vacuum. 80 (2006) 1346-1350.

DOI: 10.1016/j.vacuum.2006.01.016

Google Scholar

[11] M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, N. Abe, Microstructures formation on titanium plate by femtosecond laser ablation, J. Phys. Conf. Ser. 59 (2007) 666-669.

DOI: 10.1088/1742-6596/59/1/140

Google Scholar

[12] K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation, Phys. Rev. B 82. (2010) 165417-1 - 165417-5.

DOI: 10.1103/physrevb.82.165417

Google Scholar

[13] S.K. Das, D. Dufft, A. Rosenfeld, J. Bonse, Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces, J. Appl. Phys. 105 (2009) 084912-1 - 084912-5.

DOI: 10.1063/1.3117509

Google Scholar

[14] D. Dufft, A. Rosenfeld, S.K. Das, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO, J. Appl. Phys. 105 (2009) 034908-1 - 034908-9.

DOI: 10.1063/1.3074106

Google Scholar

[15] N. Yasumaru, K. Miyazaki, J. Kiuchi, Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC, Appl. Phys. A: Mater. Sci. Process. 76 (2003) 983-985.

DOI: 10.1007/s00339-002-1979-2

Google Scholar

[16] T. Shinonaga, M. Tsukamoto, N. Ryousuke, Y. Ito, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, X. Guoqiang, N. Abe, Formation of Periodic Nanostructures on Titanium dioxide film by femtosecond laser irradiation, Trans. of JWRI. 41 1 (2012).

DOI: 10.2351/1.5062529

Google Scholar