Plasma Modification of DLC Films and the Resulting Surface Biocompatibility

Article Preview

Abstract:

Diamond-like carbon (DLC) films were synthesized on a p-type silicon wafer using radio-frequency plasma composed of a mixture of Ar and C2H2 (ratio of 7 to 28). NH3 plasma treatment of as-grown DLC substrate was carried out to generate surface-terminal amino groups while oxidation of as-grown DLC was performed in O2 plasma. X-ray photoelectron spectroscopy (XPS) was used to characterize the different surface functions formed on DLC surfaces. Water contact angle measurements indicate different wetbility of modified surfaces. The cell (Mouse MC3T3-E1 pre-osteoblasts) morphology and proliferation were monitored to evaluate the biocompatibility of the modified DLC surfaces. A cell count kit-8 (CCK-8 Beyotime) was employed to determine quantitatively the viable pre-osteoblasts. The cell viability assay shows that osteoblast proliferation are improved on NH3 and O2 plasma-treated DLC surface after culturing for 1day, 2days and 3 days. The cell-surface interactions are studied by fluorescence microscopy. There are more osteoblasts as well as better spreading on the aminated and oxidized surfaces after culturing for 3 days. In summary, compared to the as-grown sample, the modified DLC shows better biocompatibility.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1396-1401

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Halpern, S. Xie, G. P. Sutton, B.T. Higashikubo, C.A. Chestek, H. Lu, H.J. Chiel, H. B. Martin, Diamond Rel. Mater. 15(2006) 183.

DOI: 10.1016/j.diamond.2005.06.039

Google Scholar

[2] S. Xie, G. Shafer, C.G. Wilson, H.B. Martin, Diamond Rel. Mater. 15 (2006)225.

Google Scholar

[3] Y. L. Zhou, J. F. Zhi, Electrochem. Commun. 8(2006)1811.

Google Scholar

[4] A. Härtl, E. Schmich, J. A. Garrido, J. Hernando, S.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, M. Stutzmann, Nature Mater. 3(2004)702.

DOI: 10.1038/nmat1204

Google Scholar

[5] W. Yang, J.E. Butler, J.N. Russell, R.J. Hamers, Langmuir, 20(2004)6778.

Google Scholar

[6] K. Stolarczyk, E. Nazaruk, J. Rogalski, R. Bilewicz, Electrochem. Commun. 9( 2007)115.

Google Scholar

[7] A. H. Lettingtom, Proc. R. Soc. A 342(1993)287.

Google Scholar

[8] R. Lappalainen, H. Heinonen, A. Antla, S. Santavirta, Dimond Rel. Mater. 7(1998) 482.

Google Scholar

[9] V. M. Tiainen, Diamond Rel. Mater. 10(2001) 153.

Google Scholar

[10] M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, T. L. Parker, J. Biomed. Mater. Res. 52(2000)413.

Google Scholar

[11] J. Robertson, Mater. Sci. Eng. R Rep. 37 (4-6) (2002)129.

Google Scholar

[12] G. Dearnaley, J. H. Arps, Surface & Coatings Technology 200(2005) 2518.

Google Scholar

[13] C. Ronning, Appl. Phys. A 77(2003)39.

Google Scholar

[14] R. Hauert, Diamond Relat. Mater. 12(2003)583.

Google Scholar

[15] A. Dorner-Reisel, C. Schurer, C. Nischan, O. Seidel, E. Muller, Thin Solid Films 420( 2002) 263.

DOI: 10.1016/s0040-6090(02)00745-9

Google Scholar

[16] A. Schroeder, G. Francz, A. Bruinink, R. Hauert, J. Mayer, E. Wintermantel, Biomaterials 21(2000)449.

DOI: 10.1016/s0142-9612(99)00135-0

Google Scholar

[17] I. De Scheerder, M. Szilard, H. Yanming, J. Invasive Cardiol 12(8)(2000)389.

Google Scholar

[18] H. S. Biswas, J. Datta, D. P. Chowdhury, A. V. R. Reddy, U. C. Ghosh, A. K. Srivastava, N. R. Ray, Langmuir 26(22)(2010)17413.

Google Scholar