[1]
Princeton Plasma Physics Laboratory. (2009, April). Overview. Retrieved from National Spherical Torus Experiment - NSTX: http: /nstx. pppl. gov/nstxweb_2009/info/NSTX_information_bulletin_2009. pdf.
DOI: 10.2172/948737
Google Scholar
[2]
Robinson, P. (1990). Properties of Wrought Coppers and Copper Alloys. In Metals Handbook Volume 2 Tenth Eddition (pp.265-345). Materials Park: ASM International.
DOI: 10.31399/asm.hb.v02.a0001067
Google Scholar
[3]
ALB Copper Alloys Ltd. (2009). CuCr1Zr - UNS. C18150 Chromium Zirconium Copper Alloys. Retrieved from ALB: http: /www. alb-copperalloys. com/high-conductivity-copper/c18150.
Google Scholar
[4]
Ampco Metal AMPCOLOY 972 Chromium-Copper Alloy. (2013). Retrieved from MatWeb: http: /www. matweb. com/search/DataSheet. aspx?MatGUID=3f65d35b2aa74047a29a2f85172ce2a6&ckck=1.
Google Scholar
[5]
Wayne, T. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Templesmith, P., & Dawes, C. J. (1991). Patent No. 9125978. 7. United Kingdom.
Google Scholar
[6]
Mishra, R. S., & Mahoney, M. W. (2007). Introduction. In R. S. Mishra, & M. W. Mahoney, Friction Stir Welding and Processing (pp.1-7). Materials Park: ASM International.
Google Scholar
[7]
McNelley, T. R., Oh-Ishi, K., & Zhilyaev, A. P. (2007).
Google Scholar
[8]
Heidarzadeh, A., Saeid, T., Khodaverdizadeh, H., Mahmoudi, A., & Nazari, E. (2013, February). Establishing a Mathematical Model to Predict the Tensile Strength of Friction Stir Welded Pure Copper Joints. Metallurgical & Materials Transactions Part B, Vol. 44 Issue 1, p.175.
DOI: 10.1007/s11663-012-9755-y
Google Scholar
[9]
Lee, W. -B., & Jung, S. -B. (2004). The Joint Properties of Copper by Friction Stir Welding. Materials Letters 58, 1041-1046.
DOI: 10.1016/j.matlet.2003.08.014
Google Scholar
[10]
Nakata, K. (2005). Friction Stir Welding of Copper and Copper Alloys. Welding International, 929-933.
DOI: 10.1533/wint.2005.3519
Google Scholar
[11]
Meran, C., & Kovan, V. (2008, August). Microstructures and Mechanical Properties of Friction Stir Welded Dissimilar Copper/Brass Joints. Materialwissenschaft und Werkstofftechnik, Vol. 39, Issue 8, pp.521-530.
DOI: 10.1002/mawe.200800278
Google Scholar
[12]
Leal, R. M., Leitao, C., Loureiro, A., & Rodrigues, D. M. (2009, July). Defect Formation and Microstructural Changes in Friction Stir Welds Between Pure Copper and a Brass Alloy. Microscopy and Microanalysis. Vol. 15, Supplement S3, pp.79-80.
DOI: 10.1017/s1431927609990857
Google Scholar
[13]
Okamoto, K., Doi, M., Hirano, S., Aota, K., Okamura, H., Aono, Y., & Ping, T. C. (2001). Fabrication of Backing Plates of Copper Alloy by Friction Stir Welding. Proceedings of the Third International Symposium on Friction Stir Welding. Kobe: TWI.
DOI: 10.1533/wint.2004.3319
Google Scholar
[14]
Andersson, C. G., & Andrews, R. E. (1999). Fabrication of Containment Canisters for Nuclear Waste by Friction Stir Welding. Proceedings of the First International Symposium on Friction Stir Welding. Thousand Oaks: TWI.
DOI: 10.21236/ada432085
Google Scholar
[15]
Andersson, C. G., Andrews, R. E., Dance, B., Russell, M. J., Olden, E. J., & Sanderson, R. M. (2000).
Google Scholar