[1]
R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.
Google Scholar
[2]
R. S. Nandan, T. DebRoy, H.K.D.H. Bhadeshiab, Recent advances in friction-stir welding – Process, weldment structure and properties, Prog. Mater. Sci. 53 (2008) 980–1023.
DOI: 10.1016/j.pmatsci.2008.05.001
Google Scholar
[3]
K. J. Colligan, R. S. Mishra, A conceptual model for the process variables related to heat generation in friction stir welding of aluminum, Script. Mater. 58 (2008) 327-331.
DOI: 10.1016/j.scriptamat.2007.10.015
Google Scholar
[4]
H.B. Schmidt, J.H. Hattel, Thermal modelling of friction stir welding, Script. Mater. 58 (2008) 332-337.
DOI: 10.1016/j.scriptamat.2007.10.008
Google Scholar
[5]
H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Modeling Simul. Mater. Sci. Eng. 12 (2004) 143-157.
DOI: 10.1088/0965-0393/12/1/013
Google Scholar
[6]
P.A. Collegrove, H. R. Shercliff and R. Zettler: Model for predicting heat generation and temperature in friction stir welding from the material properties, Sci. Technol. Weld. Joining. 12 (2007) 284-297.
DOI: 10.1179/174329307x197539
Google Scholar
[7]
Y Li, LE Murr, JC McClure, Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum, Mater. Sci. Eng. A, 271(1999) 213-223.
DOI: 10.1016/s0921-5093(99)00204-x
Google Scholar
[8]
TU Seidel, AP Reynolds, Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique, Metall. Mater. Trans. A 32 (2008) 2879-2884.
DOI: 10.1007/s11661-001-1038-1
Google Scholar
[9]
P. A. Colegrove, H. R. Shercliff, 3 Dimentional CFD modeling of flow round a threaded friction stir welding tool profile, J. Mater. Process. Technol. 169 (2005) 320-327.
DOI: 10.1016/j.jmatprotec.2005.03.015
Google Scholar
[10]
R. Nandan, G. G. Roy, T. J. Lienert, T. Debroy, Three dimensional heat and material flow during friction stir welding of mild steel, Acta Mater. 55 (2007) 883-895.
DOI: 10.1016/j.actamat.2006.09.009
Google Scholar
[11]
J.Q. Su , T.W. Nelson, R.S. Mishra ,M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta. Mater. 51(2003) 713–729.
DOI: 10.1016/s1359-6454(02)00449-4
Google Scholar
[12]
P.B. Prangnell, C.P. Heason, Grain structure formation during friction stir welding observed by the stop action technique, Acta. Mater. 53(2005) 3179–3192.
DOI: 10.1016/j.actamat.2005.03.044
Google Scholar
[13]
W. Woo, Z. Feng, X. L. Wang, K. An, B. Clausen, T.A. Sisneros, J.S. Jeonng, In situ neutron diffraction analysis of grain structure during friction stir processing of an aluminum alloy, Mater. Lett. 85 (2012) 29–32.
DOI: 10.1016/j.matlet.2012.06.091
Google Scholar
[14]
Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Mater. Sci. Eng. A 415 (2006) 250-254.
DOI: 10.1016/j.msea.2005.09.072
Google Scholar
[15]
W.J. Arbegast, A flow-partitioned deformation zone model for defect formation during friction stir welding, Script. Mater. 58(2008) 372-376.
DOI: 10.1016/j.scriptamat.2007.10.031
Google Scholar
[16]
R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, M.A. Stremler, Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding, Sci. Technol. Weld. Joining. 11(2006) 657-665.
DOI: 10.1179/174329306x147742
Google Scholar
[17]
M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, W.H. Bingel, Properties of friction-stir-welded 7075 T651 aluminum, Metall. Mater. Trans. A 29(1998) 1955-(1964).
DOI: 10.1007/s11661-998-0021-5
Google Scholar
[18]
M. Peel, A. Steuwer, M. Preuss, P.J. Withers, Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta. Mater. 51(2003) 4791-4801.
DOI: 10.1016/s1359-6454(03)00319-7
Google Scholar
[19]
A.P. Reynolds, W. Tang, T. Gnaupel-Herold, H. Prask, Structure, properties, and residual stress of 304L stainless steel friction stir welds, Script. Mater. 48(2003) 1289-1294.
DOI: 10.1016/s1359-6462(03)00024-1
Google Scholar
[20]
R. Rai, A. De, H. K. D. H. Bhadeshia, T. DebRoy, Review: friction stir welding tools, Sci. Technol. Weld. Joining. 16 (2011) 325–342.
DOI: 10.1179/1362171811y.0000000023
Google Scholar
[21]
S. Xu, X. Deng, A. P. Reynolds, T. U. Seidel, Finite element simulation of material flow in friction stir welding. Sci. Technol. Weld. Joining, 2001, 6(3): 191-193.
DOI: 10.1179/136217101101538640
Google Scholar
[22]
H. Schmidt, J. Hattel, A local model for thermomechanical conditions in friction stir welding, Modeling Simul. Mater. Sci. Eng. 13 (2005) 77-93.
DOI: 10.1088/0965-0393/13/1/006
Google Scholar
[23]
Z. Zhang, Y.L. Liu, J.T. Chen, Effect of shoulder size on the temperature rise and the material deformation on friction stir welding. Int. J. Adv. Manuf. Technol. 45(2009) 889-895.
DOI: 10.1007/s00170-009-2034-7
Google Scholar
[24]
M. Grujicic, G. Arakere, B. Panduangan, Computational investigation of hardness evolution during friction stir welding of AA5083 and AA2219 Aluminum alloys, J. Mater. Eng. Perform. 20 (2011) 1097-1108.
DOI: 10.1007/s11665-010-9741-y
Google Scholar
[25]
T.U. Seidel, A.P. Reynolds. Two-dimentional friction stir welding process model based on fluid mechanics, Sci. Technol. Weld. Joining 8 (2003) 175-183.
DOI: 10.1179/136217103225010952
Google Scholar
[26]
P.A. Colegrave, H.R. Shercliff, Development of Trivex friction stir welding tool Part 2-three dimensional flow modelling, Sci. Technol. Weld. Joining 9 (2004) 352-361.
DOI: 10.1179/136217104225021661
Google Scholar
[27]
A. Bastier, M.H. Maitournam, K. Dang Van, F. Roger, Steady state thermomechanical modeling of friction stir welding. Sci. Technol. Weld. Joining 11 (2006) 278-288.
DOI: 10.1179/174329306x102093
Google Scholar
[28]
P.A. Colegrave, H.R. Shercliff, CFD modeling of Friction stir welding of thick plate 7449 aluminum alloy, Sci. Technol. Weld. Joining, 11 (2006) 429-441.
DOI: 10.1179/174329306x107700
Google Scholar
[29]
R. Nandan, G. G. Roy, T. J. Lienert, T. Debroy, Numerical simulation of three-dimensional heat transfer and plastic flow, Metall. Mater. Trans. 37A (2006) 1247-1259.
DOI: 10.1007/s11661-006-1076-9
Google Scholar
[30]
A. Arora, Z. Zhang, A. De, T. DebRoy. Strains and strain rates during friction stir welding. Script. Mater. 61(2009) 863-866.
DOI: 10.1016/j.scriptamat.2009.07.015
Google Scholar
[31]
B.C. Liechty, B.W. Webb. Modeling the frictional boundary condition in friction stir welding. Int. J. Machine Tools Manuf. 78(2008) 1474-1485.
DOI: 10.1016/j.ijmachtools.2008.04.005
Google Scholar
[32]
H. Atharifar, D. Lin, R. Kovacevic. Numerical and experimental investigations on the loads carried by tool during friction stir welding. J. Mater. Eng. Perform. 18, 2009, 4 339-350.
DOI: 10.1007/s11665-008-9298-1
Google Scholar
[33]
G.Q. Chen, Q.Y. Shi, Y. Fujiya, T. Horie. Simulation of metal flow during friction stir welding based on the model of interactive force between tool and material. Trends in Welding Research, Proceedings of 9th International Conference, June 4-8, 2012, Chicago, Illinois, USA.
DOI: 10.1007/s11665-014-0886-y
Google Scholar
[34]
Z. Yu, W. Zhang, H. Choo and Z. Feng. Transient heat and mateiral flow modeling of friction stir welding of Magnesium alloy using threaded tool. Metall. Mater. Trans. A. 43A (2012) 724-737.
DOI: 10.1007/s11661-011-0862-1
Google Scholar
[35]
Y. M. Hwang, Z.W. Kang, Y.C. Chiou, H.H. Hsu, Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys, Int. J. Mach. Tools Manuf. 48 (2008) 778–787.
DOI: 10.1016/j.ijmachtools.2007.12.003
Google Scholar