Numerical Analysis of Multi-Field Coupled Phenomena in Friction Stir Welding and Applications

Article Preview

Abstract:

Friction stir welding (FSW) is an advanced solid state joining technology, which was invented by TWI in 1991. During the process, large amount of heat is generated due to the friction between the tool and the material. As a result, the metal around the tool is softened as the temperature rises, and significant plastic flow occurs. So FSW is a complex process with multi-field coupled phenomena. Material flow plays a central role in FSW. But it is still difficult to reveal the material flow regime and joining mechanism during FSW process. Numerical simulation is a powerful tool for investigating the metal-flow-related complex phenomena during FSW. Meanwhile, numerical simulation could also help to optimize FSW tool design and FSW parameters. In this paper, we review the recent development in simulation of material flow during FSW. Then, the important issues in modeling multi field coupled phenomena during FSW are summarized, which include the heat generation mechanism, the temperature and strain rate dependent material’s behavior, and the interaction between tool and material. Finally, a comprehensive simulation model is presented, which enables advanced study on the coupled phenomena of heat generation, temperature distribution, material flow, and defects formation. This model has shown potential applications in simulating the relation between the transport of material and the macrostructure formation or defects formation. In spite of these progresses, simulation of material flow during FSW still need quite a lot of researches to fulfill industry requirement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1794-1807

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.

Google Scholar

[2] R. S. Nandan, T. DebRoy, H.K.D.H. Bhadeshiab, Recent advances in friction-stir welding – Process, weldment structure and properties, Prog. Mater. Sci. 53 (2008) 980–1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[3] K. J. Colligan, R. S. Mishra, A conceptual model for the process variables related to heat generation in friction stir welding of aluminum, Script. Mater. 58 (2008) 327-331.

DOI: 10.1016/j.scriptamat.2007.10.015

Google Scholar

[4] H.B. Schmidt, J.H. Hattel, Thermal modelling of friction stir welding, Script. Mater. 58 (2008) 332-337.

DOI: 10.1016/j.scriptamat.2007.10.008

Google Scholar

[5] H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Modeling Simul. Mater. Sci. Eng. 12 (2004) 143-157.

DOI: 10.1088/0965-0393/12/1/013

Google Scholar

[6] P.A. Collegrove, H. R. Shercliff and R. Zettler: Model for predicting heat generation and temperature in friction stir welding from the material properties, Sci. Technol. Weld. Joining. 12 (2007) 284-297.

DOI: 10.1179/174329307x197539

Google Scholar

[7] Y Li, LE Murr, JC McClure, Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum, Mater. Sci. Eng. A, 271(1999) 213-223.

DOI: 10.1016/s0921-5093(99)00204-x

Google Scholar

[8] TU Seidel, AP Reynolds, Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique, Metall. Mater. Trans. A 32 (2008) 2879-2884.

DOI: 10.1007/s11661-001-1038-1

Google Scholar

[9] P. A. Colegrove, H. R. Shercliff, 3 Dimentional CFD modeling of flow round a threaded friction stir welding tool profile, J. Mater. Process. Technol. 169 (2005) 320-327.

DOI: 10.1016/j.jmatprotec.2005.03.015

Google Scholar

[10] R. Nandan, G. G. Roy, T. J. Lienert, T. Debroy, Three dimensional heat and material flow during friction stir welding of mild steel, Acta Mater. 55 (2007) 883-895.

DOI: 10.1016/j.actamat.2006.09.009

Google Scholar

[11] J.Q. Su , T.W. Nelson, R.S. Mishra ,M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta. Mater. 51(2003) 713–729.

DOI: 10.1016/s1359-6454(02)00449-4

Google Scholar

[12] P.B. Prangnell, C.P. Heason, Grain structure formation during friction stir welding observed by the stop action technique, Acta. Mater. 53(2005) 3179–3192.

DOI: 10.1016/j.actamat.2005.03.044

Google Scholar

[13] W. Woo, Z. Feng, X. L. Wang, K. An, B. Clausen, T.A. Sisneros, J.S. Jeonng, In situ neutron diffraction analysis of grain structure during friction stir processing of an aluminum alloy, Mater. Lett. 85 (2012) 29–32.

DOI: 10.1016/j.matlet.2012.06.091

Google Scholar

[14] Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Mater. Sci. Eng. A 415 (2006) 250-254.

DOI: 10.1016/j.msea.2005.09.072

Google Scholar

[15] W.J. Arbegast, A flow-partitioned deformation zone model for defect formation during friction stir welding, Script. Mater. 58(2008) 372-376.

DOI: 10.1016/j.scriptamat.2007.10.031

Google Scholar

[16] R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, M.A. Stremler, Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding, Sci. Technol. Weld. Joining. 11(2006) 657-665.

DOI: 10.1179/174329306x147742

Google Scholar

[17] M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, W.H. Bingel, Properties of friction-stir-welded 7075 T651 aluminum, Metall. Mater. Trans. A 29(1998) 1955-(1964).

DOI: 10.1007/s11661-998-0021-5

Google Scholar

[18] M. Peel, A. Steuwer, M. Preuss, P.J. Withers, Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta. Mater. 51(2003) 4791-4801.

DOI: 10.1016/s1359-6454(03)00319-7

Google Scholar

[19] A.P. Reynolds, W. Tang, T. Gnaupel-Herold, H. Prask, Structure, properties, and residual stress of 304L stainless steel friction stir welds, Script. Mater. 48(2003) 1289-1294.

DOI: 10.1016/s1359-6462(03)00024-1

Google Scholar

[20] R. Rai, A. De, H. K. D. H. Bhadeshia, T. DebRoy, Review: friction stir welding tools, Sci. Technol. Weld. Joining. 16 (2011) 325–342.

DOI: 10.1179/1362171811y.0000000023

Google Scholar

[21] S. Xu, X. Deng, A. P. Reynolds, T. U. Seidel, Finite element simulation of material flow in friction stir welding. Sci. Technol. Weld. Joining, 2001, 6(3): 191-193.

DOI: 10.1179/136217101101538640

Google Scholar

[22] H. Schmidt, J. Hattel, A local model for thermomechanical conditions in friction stir welding, Modeling Simul. Mater. Sci. Eng. 13 (2005) 77-93.

DOI: 10.1088/0965-0393/13/1/006

Google Scholar

[23] Z. Zhang, Y.L. Liu, J.T. Chen, Effect of shoulder size on the temperature rise and the material deformation on friction stir welding. Int. J. Adv. Manuf. Technol. 45(2009) 889-895.

DOI: 10.1007/s00170-009-2034-7

Google Scholar

[24] M. Grujicic, G. Arakere, B. Panduangan, Computational investigation of hardness evolution during friction stir welding of AA5083 and AA2219 Aluminum alloys, J. Mater. Eng. Perform. 20 (2011) 1097-1108.

DOI: 10.1007/s11665-010-9741-y

Google Scholar

[25] T.U. Seidel, A.P. Reynolds. Two-dimentional friction stir welding process model based on fluid mechanics, Sci. Technol. Weld. Joining 8 (2003) 175-183.

DOI: 10.1179/136217103225010952

Google Scholar

[26] P.A. Colegrave, H.R. Shercliff, Development of Trivex friction stir welding tool Part 2-three dimensional flow modelling, Sci. Technol. Weld. Joining 9 (2004) 352-361.

DOI: 10.1179/136217104225021661

Google Scholar

[27] A. Bastier, M.H. Maitournam, K. Dang Van, F. Roger, Steady state thermomechanical modeling of friction stir welding. Sci. Technol. Weld. Joining 11 (2006) 278-288.

DOI: 10.1179/174329306x102093

Google Scholar

[28] P.A. Colegrave, H.R. Shercliff, CFD modeling of Friction stir welding of thick plate 7449 aluminum alloy, Sci. Technol. Weld. Joining, 11 (2006) 429-441.

DOI: 10.1179/174329306x107700

Google Scholar

[29] R. Nandan, G. G. Roy, T. J. Lienert, T. Debroy, Numerical simulation of three-dimensional heat transfer and plastic flow, Metall. Mater. Trans. 37A (2006) 1247-1259.

DOI: 10.1007/s11661-006-1076-9

Google Scholar

[30] A. Arora, Z. Zhang, A. De, T. DebRoy. Strains and strain rates during friction stir welding. Script. Mater. 61(2009) 863-866.

DOI: 10.1016/j.scriptamat.2009.07.015

Google Scholar

[31] B.C. Liechty, B.W. Webb. Modeling the frictional boundary condition in friction stir welding. Int. J. Machine Tools Manuf. 78(2008) 1474-1485.

DOI: 10.1016/j.ijmachtools.2008.04.005

Google Scholar

[32] H. Atharifar, D. Lin, R. Kovacevic. Numerical and experimental investigations on the loads carried by tool during friction stir welding. J. Mater. Eng. Perform. 18, 2009, 4 339-350.

DOI: 10.1007/s11665-008-9298-1

Google Scholar

[33] G.Q. Chen, Q.Y. Shi, Y. Fujiya, T. Horie. Simulation of metal flow during friction stir welding based on the model of interactive force between tool and material. Trends in Welding Research, Proceedings of 9th International Conference, June 4-8, 2012, Chicago, Illinois, USA.

DOI: 10.1007/s11665-014-0886-y

Google Scholar

[34] Z. Yu, W. Zhang, H. Choo and Z. Feng. Transient heat and mateiral flow modeling of friction stir welding of Magnesium alloy using threaded tool. Metall. Mater. Trans. A. 43A (2012) 724-737.

DOI: 10.1007/s11661-011-0862-1

Google Scholar

[35] Y. M. Hwang, Z.W. Kang, Y.C. Chiou, H.H. Hsu, Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys, Int. J. Mach. Tools Manuf. 48 (2008) 778–787.

DOI: 10.1016/j.ijmachtools.2007.12.003

Google Scholar