[1]
Hu, M.G., R.A. Geanangel, and W.W. Wendlandt, The thermal decomposition of ammonia borane. Thermochimica Acta, 1978. 23(2): pp.249-255.
DOI: 10.1016/0040-6031(78)85066-7
Google Scholar
[2]
Shore, S.G. and R.W. Parry, THE CRYSTALLINE COMPOUND AMMONIA-BORANE, 1 H3NBH3. Journal of the American Chemical Society, 1955. 77(22): pp.6084-6085.
DOI: 10.1021/ja01627a103
Google Scholar
[3]
Wolf, G., et al., Calorimetric process monitoring of thermal decomposition of B-N-H compounds. Thermochimica Acta, 2000. 343(1-2): pp.19-25.
DOI: 10.1016/s0040-6031(99)00365-2
Google Scholar
[4]
Chen, J., et al., In situ X-ray study of ammonia borane at high pressures. International Journal of Hydrogen Energy, 2010. 35(20): pp.11064-11070.
DOI: 10.1016/j.ijhydene.2010.07.085
Google Scholar
[5]
Filinchuk, Y., et al., High-pressure phase and transition phenomena in ammonia borane NH_{3}BH_{3} from x-ray diffraction, Landau theory, and ab initio calculations. Physical Review B, 2009. 79(21): p.214111.
DOI: 10.1103/physrevb.79.214111
Google Scholar
[6]
Bowden, M.E., G.J. Gainsford, and W.T. Robinson, Room-temperature structure of ammonia borane. Australian Journal of Chemistry, 2007. 60(3): pp.149-153.
DOI: 10.1071/ch06442
Google Scholar
[7]
Wang, L. -Q., et al., Hyperpolarized 129Xe NMR Investigation of Ammonia Borane in Mesoporous Silica. The Journal of Physical Chemistry C, 2009. 113(16): pp.6485-6490.
DOI: 10.1021/jp810994p
Google Scholar
[8]
Gunaydin-Sen, O., et al., High Resolution 15N NMR of the 225 K Phase Transition of Ammonia Borane (NH3BH3): Mixed Order-Disorder and Displacive Behavior. The Journal of Physical Chemistry B, 2007. 111(4): pp.677-681.
DOI: 10.1021/jp0649347
Google Scholar
[9]
Wang, L., et al., Structural and dynamical properties of solid ammonia borane under high pressure. THE JOURNAL OF CHEMICAL PHYSICS, 2011. 134(2): pp.024517-8.
DOI: 10.1063/1.3528724
Google Scholar
[10]
Hess, N.J., et al., Neutron Powder Diffraction and Molecular Simulation Study of the Structural Evolution of Ammonia Borane from 15 to 340 K. The Journal of Physical Chemistry A, 2009. 113(19): pp.5723-5735.
DOI: 10.1021/jp900839c
Google Scholar
[11]
Hess, N.J., et al., Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane. Chemical Physics Letters, 2008. 459(1-6): pp.85-88.
DOI: 10.1016/j.cplett.2008.04.130
Google Scholar
[12]
Brown, C.M., et al., Dynamics of ammonia borane using neutron scattering. Physica B: Condensed Matter, 2006. 385-386(Part 1): pp.266-268.
DOI: 10.1016/j.physb.2006.05.063
Google Scholar
[13]
Klooster, W.T., et al., Study of the N−H··H−B Dihydrogen Bond Including the Crystal Structure of BH3NH3 by Neutron Diffraction. Journal of the American Chemical Society, 1999. 121(27): pp.6337-6343.
DOI: 10.1021/ja9825332
Google Scholar
[14]
Paolone, A., et al., Hydrogen Dynamics and Characterization of the Tetragonal-to-Orthorhombic Phase Transformation in Ammonia Borane. The Journal of Physical Chemistry C, 2009. 113(14): pp.5872-5878.
DOI: 10.1021/jp810708g
Google Scholar
[15]
Xie, S., Y. Song, and Z. Liu, In situ high-pressure study of ammonia borane by Raman and IR spectroscopy. Canadian Journal of Chemistry, 2009. 87: pp.1235-1247.
DOI: 10.1139/v09-114
Google Scholar
[16]
Lin, Y., W.L. Mao, and H. -k. Mao, Storage of molecular hydrogen in an ammonia borane compound at high pressure. Proceedings of the National Academy of Sciences, 2009. 106(20): pp.8113-8116.
DOI: 10.1073/pnas.0903511106
Google Scholar
[17]
Lin, Y., et al., Raman spectroscopy study of ammonia borane at high pressure. THE JOURNAL OF CHEMICAL PHYSICS, 2008. 129(23): p.234509.
DOI: 10.1063/1.3040276
Google Scholar
[18]
NYLEN, et al., Thermal decomposition of ammonia borane at high pressures. The Journal of chemical physics, 2009. 131(10).
Google Scholar
[19]
Raja S. Chellappa, M.S., Viktor V. Struzhkin, Thomas Autrey, andRussell J. Hemley, Pressure-induced complexation of NH3BH3–H2. THE JOURNAL OF CHEMICAL PHYSICS, 2009. 131(224515).
DOI: 10.1063/1.3174262
Google Scholar
[20]
Wang, S., W.L. Mao, and T. Autrey, Bonding in boranes and their interaction with molecular hydrogen at extreme conditions. THE JOURNAL OF CHEMICAL PHYSICS, 2009. 131(144508).
DOI: 10.1063/1.3244982
Google Scholar
[21]
Raja S. Chellappa, T.A., Maddury Somayazulu, Viktor V. Struzhkin, and Russell J. Hemley, High-Pressure Hydrogen Interactions with Polyaminoborane and Polyiminoborane. ChemPhysChem, 2010. 11: pp.93-96.
DOI: 10.1002/cphc.200900829
Google Scholar
[22]
REKHI, et al., Temperature-induced ruby fluorescence shifts up to a pressure of 15 GPa in an externally heated diamond anvil cell. Vol. 31. 1999, London, ROYAUME-UNI: Pion.
DOI: 10.1068/htrt161
Google Scholar
[23]
Mao, H.K., J. Xu, and P.M. Bell, Calibration of the Ruby Pressure Gauge to 800 kbar Under Quasi-Hydrostatic Conditions. J. Geophys. Res., 1986. 91(B5): pp.4673-4676.
DOI: 10.1029/jb091ib05p04673
Google Scholar
[24]
Custelcean, R. and Z.A. Dreger, Dihydrogen Bonding under High Pressure: A Raman Study of BH3NH3 Molecular Crystal. The Journal of Physical Chemistry B, 2003. 107(35): pp.9231-9235.
DOI: 10.1021/jp035267+
Google Scholar
[25]
Najiba, S., et al., Raman Spectroscopy of Ammonia Borane at Low Temperature and High Pressure. Energy Technology 2012: Carbon Dioxide Management and Other Technologies, 2012: pp.331-338.
DOI: 10.1002/9781118365038.ch40
Google Scholar
[26]
Najiba, S., et al., Tetragonal to orthorhombic phase transition of ammonia borane at low temperature and high pressure. Journal of Applied Physics, 2012. 111(11): p.112618.
DOI: 10.1063/1.4726236
Google Scholar
[27]
Trudel, S. and D.F.R. Gilson, High-Pressure Raman Spectroscopic Study of the Ammonia−Borane Complex. Evidence for the Dihydrogen Bond. Inorganic Chemistry, 2003. 42(8): pp.2814-2816.
DOI: 10.1021/ic026275s
Google Scholar
[28]
Baitalow, F., et al., Thermal decomposition of ammonia–borane under pressures up to 600  bar. Thermochimica Acta, 2006. 445(2): pp.121-125.
DOI: 10.1016/j.tca.2005.07.002
Google Scholar
[29]
Baitalow, F., et al., Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods. Thermochimica Acta, 2002. 391(1-2): pp.159-168.
DOI: 10.1016/s0040-6031(02)00173-9
Google Scholar