Behavior of Decomposed Ammonia Borane at High Pressure up to ~10 GPa

Article Preview

Abstract:

We conducted in situ Raman spectroscopy study on ammonia borane loaded in diamond anvil cell (DAC). The ammonia borane was decomposed at around 140 degree Celsius under the pressure ~0.7 GPa. Raman spectra show the hydrogen was desorbed within 1 hour at 140 degree Celsius. The hydrogen was sealed in the DAC well and cooled down near to room temperature. Applying higher pressure up to ~10 GPa indicates interactions between the products and loss of dihydrogen bonding. No rehydrogenation was detected in the pressure range investigated.Keywords: Ammonia borane; Diamond anvil cell; High pressure; Phase transition

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

1829-1835

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hu, M.G., R.A. Geanangel, and W.W. Wendlandt, The thermal decomposition of ammonia borane. Thermochimica Acta, 1978. 23(2): pp.249-255.

DOI: 10.1016/0040-6031(78)85066-7

Google Scholar

[2] Shore, S.G. and R.W. Parry, THE CRYSTALLINE COMPOUND AMMONIA-BORANE, 1 H3NBH3. Journal of the American Chemical Society, 1955. 77(22): pp.6084-6085.

DOI: 10.1021/ja01627a103

Google Scholar

[3] Wolf, G., et al., Calorimetric process monitoring of thermal decomposition of B-N-H compounds. Thermochimica Acta, 2000. 343(1-2): pp.19-25.

DOI: 10.1016/s0040-6031(99)00365-2

Google Scholar

[4] Chen, J., et al., In situ X-ray study of ammonia borane at high pressures. International Journal of Hydrogen Energy, 2010. 35(20): pp.11064-11070.

DOI: 10.1016/j.ijhydene.2010.07.085

Google Scholar

[5] Filinchuk, Y., et al., High-pressure phase and transition phenomena in ammonia borane NH_{3}BH_{3} from x-ray diffraction, Landau theory, and ab initio calculations. Physical Review B, 2009. 79(21): p.214111.

DOI: 10.1103/physrevb.79.214111

Google Scholar

[6] Bowden, M.E., G.J. Gainsford, and W.T. Robinson, Room-temperature structure of ammonia borane. Australian Journal of Chemistry, 2007. 60(3): pp.149-153.

DOI: 10.1071/ch06442

Google Scholar

[7] Wang, L. -Q., et al., Hyperpolarized 129Xe NMR Investigation of Ammonia Borane in Mesoporous Silica. The Journal of Physical Chemistry C, 2009. 113(16): pp.6485-6490.

DOI: 10.1021/jp810994p

Google Scholar

[8] Gunaydin-Sen, O., et al., High Resolution 15N NMR of the 225 K Phase Transition of Ammonia Borane (NH3BH3):  Mixed Order-Disorder and Displacive Behavior. The Journal of Physical Chemistry B, 2007. 111(4): pp.677-681.

DOI: 10.1021/jp0649347

Google Scholar

[9] Wang, L., et al., Structural and dynamical properties of solid ammonia borane under high pressure. THE JOURNAL OF CHEMICAL PHYSICS, 2011. 134(2): pp.024517-8.

DOI: 10.1063/1.3528724

Google Scholar

[10] Hess, N.J., et al., Neutron Powder Diffraction and Molecular Simulation Study of the Structural Evolution of Ammonia Borane from 15 to 340 K. The Journal of Physical Chemistry A, 2009. 113(19): pp.5723-5735.

DOI: 10.1021/jp900839c

Google Scholar

[11] Hess, N.J., et al., Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane. Chemical Physics Letters, 2008. 459(1-6): pp.85-88.

DOI: 10.1016/j.cplett.2008.04.130

Google Scholar

[12] Brown, C.M., et al., Dynamics of ammonia borane using neutron scattering. Physica B: Condensed Matter, 2006. 385-386(Part 1): pp.266-268.

DOI: 10.1016/j.physb.2006.05.063

Google Scholar

[13] Klooster, W.T., et al., Study of the N−H··H−B Dihydrogen Bond Including the Crystal Structure of BH3NH3 by Neutron Diffraction. Journal of the American Chemical Society, 1999. 121(27): pp.6337-6343.

DOI: 10.1021/ja9825332

Google Scholar

[14] Paolone, A., et al., Hydrogen Dynamics and Characterization of the Tetragonal-to-Orthorhombic Phase Transformation in Ammonia Borane. The Journal of Physical Chemistry C, 2009. 113(14): pp.5872-5878.

DOI: 10.1021/jp810708g

Google Scholar

[15] Xie, S., Y. Song, and Z. Liu, In situ high-pressure study of ammonia borane by Raman and IR spectroscopy. Canadian Journal of Chemistry, 2009. 87: pp.1235-1247.

DOI: 10.1139/v09-114

Google Scholar

[16] Lin, Y., W.L. Mao, and H. -k. Mao, Storage of molecular hydrogen in an ammonia borane compound at high pressure. Proceedings of the National Academy of Sciences, 2009. 106(20): pp.8113-8116.

DOI: 10.1073/pnas.0903511106

Google Scholar

[17] Lin, Y., et al., Raman spectroscopy study of ammonia borane at high pressure. THE JOURNAL OF CHEMICAL PHYSICS, 2008. 129(23): p.234509.

DOI: 10.1063/1.3040276

Google Scholar

[18] NYLEN, et al., Thermal decomposition of ammonia borane at high pressures. The Journal of chemical physics, 2009. 131(10).

Google Scholar

[19] Raja S. Chellappa, M.S., Viktor V. Struzhkin, Thomas Autrey, andRussell J. Hemley, Pressure-induced complexation of NH3BH3–H2. THE JOURNAL OF CHEMICAL PHYSICS, 2009. 131(224515).

DOI: 10.1063/1.3174262

Google Scholar

[20] Wang, S., W.L. Mao, and T. Autrey, Bonding in boranes and their interaction with molecular hydrogen at extreme conditions. THE JOURNAL OF CHEMICAL PHYSICS, 2009. 131(144508).

DOI: 10.1063/1.3244982

Google Scholar

[21] Raja S. Chellappa, T.A., Maddury Somayazulu, Viktor V. Struzhkin, and Russell J. Hemley, High-Pressure Hydrogen Interactions with Polyaminoborane and Polyiminoborane. ChemPhysChem, 2010. 11: pp.93-96.

DOI: 10.1002/cphc.200900829

Google Scholar

[22] REKHI, et al., Temperature-induced ruby fluorescence shifts up to a pressure of 15 GPa in an externally heated diamond anvil cell. Vol. 31. 1999, London, ROYAUME-UNI: Pion.

DOI: 10.1068/htrt161

Google Scholar

[23] Mao, H.K., J. Xu, and P.M. Bell, Calibration of the Ruby Pressure Gauge to 800 kbar Under Quasi-Hydrostatic Conditions. J. Geophys. Res., 1986. 91(B5): pp.4673-4676.

DOI: 10.1029/jb091ib05p04673

Google Scholar

[24] Custelcean, R. and Z.A. Dreger, Dihydrogen Bonding under High Pressure:  A Raman Study of BH3NH3 Molecular Crystal. The Journal of Physical Chemistry B, 2003. 107(35): pp.9231-9235.

DOI: 10.1021/jp035267+

Google Scholar

[25] Najiba, S., et al., Raman Spectroscopy of Ammonia Borane at Low Temperature and High Pressure. Energy Technology 2012: Carbon Dioxide Management and Other Technologies, 2012: pp.331-338.

DOI: 10.1002/9781118365038.ch40

Google Scholar

[26] Najiba, S., et al., Tetragonal to orthorhombic phase transition of ammonia borane at low temperature and high pressure. Journal of Applied Physics, 2012. 111(11): p.112618.

DOI: 10.1063/1.4726236

Google Scholar

[27] Trudel, S. and D.F.R. Gilson, High-Pressure Raman Spectroscopic Study of the Ammonia−Borane Complex. Evidence for the Dihydrogen Bond. Inorganic Chemistry, 2003. 42(8): pp.2814-2816.

DOI: 10.1021/ic026275s

Google Scholar

[28] Baitalow, F., et al., Thermal decomposition of ammonia–borane under pressures up to 600  bar. Thermochimica Acta, 2006. 445(2): pp.121-125.

DOI: 10.1016/j.tca.2005.07.002

Google Scholar

[29] Baitalow, F., et al., Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods. Thermochimica Acta, 2002. 391(1-2): pp.159-168.

DOI: 10.1016/s0040-6031(02)00173-9

Google Scholar