Multiscale Analysis of Acoustic Emission during Plastic Flow of Al and Mg Alloys: From Microseconds to Minutes

Article Preview

Abstract:

Recent studies of plastic deformation using high-resolution experimental techniques bear witness that deformation processes are often characterized by collective effects emerging on an intermediate scale between the scales describing the dynamics of individual crystal defects or the macroscopic plastic flow. In particular, the acoustic emission (AE) reveals intermittency of plastic deformation in various experimental conditions, which is manifested by the property of scale invariance, a characteristic feature of self-organized phenomena. Some materials, e.g., Al or Mg alloys, display a macroscopic discontinuity of plastic flow due to the Portevin-Le Chatelier effect or twinning. These materials are therefore of special interest for the study of collective effects in plasticity. The present work reviews the results of a multiscale investigation of AE accompanying plastic deformation of such model alloys. The AE is analyzed by methods borrowed from the theory of nonlinear dynamical systems, including statistical and multifractal analyses.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

204-209

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Portevin, F. Le Chatelier, Comptes Rendus Acad. Sci. Paris 176 (1923) 507-510.

Google Scholar

[2] M.A. Lebyodkin, Y. Brechet, Y. Estrin, L.P. Kubin, Phys. Rev. Lett. 74 (1995) 4758-4761.

DOI: 10.1103/physrevlett.74.4758

Google Scholar

[3] P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38 (1988) 364-374.

Google Scholar

[4] H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, L. Sh. Tsimring, Rev. Mod. Phys. 65 (1993) 1331.

Google Scholar

[5] G. Ananthakrishna, C. Fressengeas, M. Grosbras, J. Vergnol, C. Engelke, J. Plessing, H. Neuhäuser, E. Bouchaud, J. Planès, L.P. Kubin, Scripta Metall. Mater. 32 (1995) 1731-1737.

DOI: 10.1016/0956-716x(95)00013-l

Google Scholar

[6] Y. Bougherira, D. Entemeyer, C. Fressengeas, N.P. Kobelev, T.A. Lebedkina, M.A. Lebyodkin, J. Phys. Conf. Series 240 (2010) 012009.

DOI: 10.1088/1742-6596/240/1/012009

Google Scholar

[7] M. A. Lebyodkin, N. P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V.S. Gornakov, T. A Lebedkina, I.V. Shashkov, Acta Mater. 60 (2012) 3729-3740.

DOI: 10.1016/j.actamat.2012.03.026

Google Scholar

[8] M.A. Lebyodkin, T.A. Lebedkina, Phys. Rev. E 73 (2006) 036114.

Google Scholar

[9] M. A. Lebyodkin, N. P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, T A Lebedkina, I.V. Shashkov, Acta Mater. 60 (2012) 844-850.

DOI: 10.1016/j.actamat.2011.10.042

Google Scholar

[10] J. Weiss, J. -R. Grasso, M. -C. Miguel, A. Vespignani, S. Zapperi, Mater. Sci. Eng. A 309 (2001) 360-364.

Google Scholar

[11] T. Richeton, J. Weiss, F. Louchet, Nature Mater. 4 (2005) 465-469.

Google Scholar

[12] C. Fressengeas, A.J. Beaudoin, D. Entemeyer, T. Lebedkina, M. Lebyodkin, V. Taupin, Phys. Rev. B 79 (2009) 014108.

DOI: 10.1103/physrevb.79.014108

Google Scholar

[13] T. Richeton, P. Dobroň, F. Chmelík, J. Weiss, F. Louchet, Mater. Sci. Eng. A 424 (2006) 190-195.

Google Scholar

[14] R. Král, P. Dobroň, F. Chmelík, V. Koula, M. Rydlo, M. Janeček, Kovove Mater. 45 (2007) 159–163.

Google Scholar

[15] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33 (1986) 1141-1151.

DOI: 10.1103/physreva.33.1141

Google Scholar

[16] K. Máthis, F. Chmelík, M. Janeček, B. Hadzima, et al., Acta Mater. 54 (2006) 5361-5366.

DOI: 10.1016/j.actamat.2006.06.033

Google Scholar