[1]
R. A. Zoroofi, T. Nishii, Y. Sato, N. Sugano, H. Yoshikawa and S. Tamura, Segmentation of avascular necrosis of the femoral head using 3-D MR images. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 25 (2001).
DOI: 10.1016/s0895-6111(01)00013-1
Google Scholar
[2]
R. A. Zoroofi, Y. Sato, T. Nishii, N. Sugano, H. Yoshikawa and S. Tamura, Automated segmentation of necrotic femoral head from 3D MR data, "Comput. Med. Imaging Graph., 28(2004), 267-278.
DOI: 10.1016/j.compmedimag.2004.03.004
Google Scholar
[3]
P. Bourgeat, J. Fripp, P. Stanwell, S. Ramadan and S. Ourselin, MR image segmentation of the knee bone using phase information. Med. Image Anal., 11 (2007), 325-335.
DOI: 10.1016/j.media.2007.03.003
Google Scholar
[4]
J. Calder, A. M. Tahmasebi and A. Mansouri, A variational approach to bone segmentation in CT images. SPIE Medical Imaging, 2011, 79620B-79620B-15.
DOI: 10.1117/12.877355
Google Scholar
[5]
J. Zhang, C. Yan, C. Chui and S. Ong, Fast segmentation of bone in CT images using 3D adaptive thresholding. Comput. Biol. Med., 40 (2010), 231-236.
DOI: 10.1016/j.compbiomed.2009.11.020
Google Scholar
[6]
C. Cernazanu-glavan, S. Holban, Segmentation of Bone Structure in X-ray Images using Convolutional Neural Network. Advances in Electrical and Computer Engineering, 13 (2013), 87-94.
DOI: 10.4316/aece.2013.01015
Google Scholar
[7]
Y. Jiang and P. Babyn, X-ray bone fracture segmentation by incorporating global shape model priors into geodesic active contours. Int. Congr. Ser., 1268 (2004), 219-224.
DOI: 10.1016/j.ics.2004.03.109
Google Scholar
[8]
D. T. Morris and C. F. Walshaw, Segmentation of the finger bones as a prerequisite for the determination of bone age. Image Vision Comput., 12 (1994), 239-245.
DOI: 10.1016/0262-8856(94)90077-9
Google Scholar
[9]
Z. Xiao, J. Shi and Q. Chang, Automatic image segmentation algorithm based on PCNN and fuzzy mutual information. Computer and Information Technology, 2009, 241-245.
DOI: 10.1109/cit.2009.92
Google Scholar
[10]
H. Cai, X. Y. Zhang, H. T. Dai and D. M. Zhou, An Image Segmentation Method Using Image Enhancement and PCNN with Adaptive Parameters. Advanced Materials Research, 490 (2012), 1251-1255.
DOI: 10.4028/www.scientific.net/amr.490-495.1251
Google Scholar
[11]
S. Wei, Q. Hong and M. Hou, Automatic image segmentation based on PCNN with adaptive threshold time constant. Neurocomputing, 74 (2011), 1485-1491.
DOI: 10.1016/j.neucom.2011.01.005
Google Scholar
[12]
K. Gao, M. Dong, F. Jia and M. Gao, OTSU image segmentation algorithm with immune computation optimized PCNN parameters. Engineering and Technology (S-CET), 2012, 1-4.
DOI: 10.1109/scet.2012.6341953
Google Scholar
[13]
F. Du, Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO). Pattern Recognition Letters 26 (2005), 597-603.
DOI: 10.1016/j.patrec.2004.11.002
Google Scholar
[14]
I. Hage, R. Hamade, Smart segmentation of Bone histology slides using Pulse coupled neural networks (PCNN) optimized by particle-swarm optimization (PSO). 6th ECCOMAS Conference on Smart Structures and Materials, SMART2013, Politecnico di Torino, 24-26 June (2013).
DOI: 10.1016/j.compmedimag.2013.08.003
Google Scholar
[15]
I. Hage, R. Hamade, Structural Feature-attribute-based Segmentation of Optical Images of Bone Slices Using Optimized Pulse Coupled Neural Networks (PCNN). Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition IMECE 2013. San Diego, California, USA.
DOI: 10.1115/imece2013-62265
Google Scholar