Quantitative Investigation on Nano-Scale Precipitates in an Al-7.5Zn-1.7Mg-1.4Cu-0.12Zr Alloy under Various Aging Tempers

Article Preview

Abstract:

In the present study, a systematic study of nanoscale precipitates in an Al-7.5Zn-1.7Mg-1.4Cu-0.12Zr alloy have been carried out for various typical aging tempers, including T6, T76, T74, T73 and RRA treatments, by combining synchrotron-based small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) techniques. Based on the TEM observations, quantitative and statistical structural information, including precipitate size, volume fraction, number density and inter-precipitate distance have been extracted from SAXS data through model fitting. The results show that the T6 peak-aged alloy with the smallest precipitate size has the highest number density and lowest volume fraction of precipitates. Under two-step T7X over-aged tempers, with the deepen of aging degree, the precipitate size, volume fraction and inter-precipitate distance increases, but the number density decreases. The size distribution of precipitates for the RRA-treated alloy is in between that of T6 and T76. The results also show that as the degree of over-aging deepens, the precipitate size distribution interval becomes broader.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

210-215

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.F. Oliveira, M.C. de Barros, K.R. Cardoso, D.N. Travessa, Mater. Sci. Eng. A 379 (2004) 321-326.

Google Scholar

[2] X.Z. Li, V. Hansen, J. GjØnnes, L.R. Wallenberg, Acta Mater. 47 (1999) 2651-2659.

Google Scholar

[3] G. Sha, A. Cerezo, Acta Mater. 52 (2004) 4503-4516.

Google Scholar

[4] T. Warner, Mater. Sci. Forum 519-521 (2006) 1271-1278.

Google Scholar

[5] D.J. Chakrabarti, J. Liu, R.R. Sawtell, G.B. Venema, Mater. Forum 28 (2004) 969-974.

Google Scholar

[6] B.Q. Xiong, X.W. Li, Y.A. Zhang, Z.H. Li, B.H. Zhu, F. Wang, H.W. Liu, Mater. Sci. Forum 706-709 (2012) 431-435.

Google Scholar

[7] T. Ramgopal, P.I. Gouma, G.S. Frankel, Corrosion 58 (2002) 687-697.

Google Scholar

[8] J.N. Fridlyander, O.G. Senatorova, Mater. Sci. Forum 217-212 (1996) 1813-1818.

Google Scholar

[9] J. Li, N. Birbilis, C. Li, Z. Jia, B. Cai, Z.Q. Zheng, Mater. Charact. 60 (2009) 1334-1341.

Google Scholar

[10] L.K. Berg, J. GjÆnnes, Acta Mater. 49 (2001) 3443-3451.

Google Scholar

[11] O. Glatter, O. Kratky, Small Angle X-ray Scattering, London: Academic Press, (1982).

Google Scholar

[12] A. Guinier, G. Fournet, Small-angle scattering of X-rays, New York: John Wiley, (1955).

Google Scholar

[13] F. Zhang, J. Ilavsky, G. Long, J. Quintana, A. Allen, P. Jemian, Metall. Mater. Trans. A 41 (2010) 1151-1158.

Google Scholar

[14] J. Ilavsky, Nika - software for 2D data reduction, J. Appl. Cryst. 45 (2012) 324-328.

DOI: 10.1107/s0021889812004037

Google Scholar

[15] J. Ilavsky, P.R. Jemian, Irena: tool suite for modeling and analysis of small-angle scattering, J. Appl. Cryst. 42 (2009) 347-353.

DOI: 10.1107/s0021889809002222

Google Scholar

[16] M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, A. Deschamps, Acta Mater. 53 (2005) 2881-2892.

Google Scholar

[17] X.W. Li, B.Q. Xiong, Y.A. Zhang, Z.H. Li, J.H. You, X.H. Yin, Y.Q. Fan, B.H. Zhu, Mater. Sci. Forum, 706-709 (2012) 335-339.

Google Scholar

[18] X.W. Li, B.Q. Xiong, Y.A. Zhang, B.H. Zhu, H.W. liu, Z.H. Li, Mater. Sci. Forum, 638-642 (2010) 273-278.

Google Scholar

[19] A. Deschamps, F. De Geuser, J. Appl. Cryst. 44 (2011) 343-352.

Google Scholar

[20] E.W. Huang, P.K. Liaw, L. Porcar, Y. Liu, Y.L. Liu, J.J. Kai, W.R. Chen, Appl. Phys. Lett. 93 (2008) 161904(1-3).

Google Scholar

[21] T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 248-260.

DOI: 10.1016/j.actamat.2009.09.003

Google Scholar