Catalytic Properties of Ni-Al Intermetallic Nanoparticles Fabricated by Thermal Plasma Process

Article Preview

Abstract:

The catalytic activity of Ni-Al (Ni25Al) nanoparticles fabricated by thermal plasma evaporation was examined for methanol decomposition and CO oxidation. The nanoparticles exhibited high activity for both reactions. Characterization of the nanoparticles revealed that the fabricated nanoparticles were mainly comprised of Ni and Ni3Al phases. During CO oxidation, the Ni phase was oxidized to NiO, while the Ni3Al phase remained unchanged. The NiO phase is supposed to serve as the active sites for CO oxidation. In contrast, during methanol decomposition, no obvious oxidation was observed for both Ni and Ni3Al phases. The Ni and Ni3Al phases are supposed to contribute to the high activity for methanol decomposition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2040-2045

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sankar, N. Dimitratos, P.J. Miedziak, P.P. Wells, C.J. Kiely, G.J. Hutchings, Chem. Soc. Rev. 41 (2012) 8099-8139.

DOI: 10.1039/c2cs35296f

Google Scholar

[2] B.D. Chandler, C.G. Long, J.D. Gilbertson, C.J. Pursell, G. Vijayaraghavan, K.J. Stevenson, J. Phys. Chem. C 114 (2010) 11498-11508.

DOI: 10.1021/jp101845d

Google Scholar

[3] J. Arana, P.R. de la Piscina, J. Llorca, J. Sales, N. Homs, J.L.G. Fierro, Chem. Mater. 10 (1998) 1333-1342.

Google Scholar

[4] W.M.H. Sachtler, Ensemble and Ligand Effects in Metal Catalysis, in: G. Ertl, H. Knozinger, F. Schuth, J. Weitkamp (Eds. ), Handbook of Heterogeneous Catal., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, pp.1585-1593.

Google Scholar

[5] N. Wada, Jpn. J. Appl. Phys. 6 (1967) 553-556.

Google Scholar

[6] M. Uda, Nanostructured Mater. 1 (1992) 101-106.

Google Scholar

[7] T. Minami, S. Ida, T. Miyata, Thin Solid Films 416 (2002) 92-96.

Google Scholar

[8] Z. Wei, P. Yan, W. Feng, J. Dai, Q. Wang, T. Xia, Materials Characterization 57 (2006) 176-181.

Google Scholar

[9] X.K. Duan, J.Y. Yang, W. Zhong, W. Zhu, S.Q. Bao, X.A. Fan, Powder Technology 172 (2007) 63-66.

Google Scholar

[10] D.P. Pope, S.S. Ezz, Int. Mater. Rev. 29 (1984) 136-167.

Google Scholar

[11] M. Yamaguchi, Y. Umakoshi, Progress in Mater. Sci. 34 (1990) 1-148.

Google Scholar

[12] Y. Xu, S. Kameoka, K. Kishida, M. Demura, A.P. Tsai, T. Hirano, Intermetallics 13 (2005) 151-155.

DOI: 10.1016/j.intermet.2004.07.039

Google Scholar

[13] Y. Ma, Y. Xu, M. Demura, D.H. Chun, G. Xie, T. Hirano, Catal. Lett. 112 (2006) 31-36.

Google Scholar

[14] Y. Xu, M. Demura, T. Hirano, Appl. Surf. Sci. 254 (2008) 5413-5420.

Google Scholar

[15] Y. Ma, Y. Xu, M. Demura, T. Hirano, Appl. Catal. B: Enviromental 80 (2008) 15-23.

Google Scholar

[16] Y. Xu, J.Y. Yang, M. Demura, T. Hara, T. Hirano, Materials Science Forum 654-656 (2010) 2907-2910.

DOI: 10.4028/www.scientific.net/msf.654-656.2907

Google Scholar

[17] M. Tanaka, Y. Katsuya, A. Yamamoto, Rev. Sci. Instruments 79 (2008) 075106-1-6.

Google Scholar

[18] G. Saravanan, H. Abe, Y. Xu, N. Sekido, H. Hirata, S. Matsumoto, H. Yoshikawa, Y. Yomabe-Mitarai, Langmuir 26 (2010) 11446-11451.

DOI: 10.1021/la100942h

Google Scholar

[19] G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science 300 (2003) 2075-(2077).

Google Scholar