Preparation of Textured Li1+x-yNb1-x-3yTix+4yO3 Solid Solution in a High Magnetic Field

Article Preview

Abstract:

In the Li2O-Nb2O5-TiO2 system, Li1+x-yNb1-x-3yTix+4yO3 (0.06  x  0.33, 0  y  0.09) (LNT) forms with a superstructure, which is the so-called M-phase. In this work, as a first step toward application of the unique qualities of an electro-ceramic with an anisotropic structure, we prepared an oriented LNT balk ceramic by slip casting in a strong magnetic field of 12 T. The direction of the magnetic field was parallel to the casting direction. The compact was densified by cold isostatic pressing and then heated at 1373 K. The obtained specimen was analyzed by X-ray diffraction, scanning electron microscope, and transmission electron microscope. Consequently, the c-axis of the LNT powders was aligned parallel to the magnetic field and a high orientation degree was achieved in a strong magnetic field of 12 T

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2480-2484

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. E. Villafuerte-Castrejon, J. A. Gracia, E. Cisneros, R. Valenzuela, A. R. West, J. Brit. Ceram. Soc. 83 (1984) 143-145.

Google Scholar

[2] M. E. Villafuerte-Castrejon, A. Aragon-Pina, R. Valenzuela, A. R. West, J. Solid State Ceram. 71 (1987) 103 -108.

Google Scholar

[3] R. I. Smith, A. R. West, Mat. Res. Bull. 27 (1992) 277-285.

Google Scholar

[4] H. Hayashi, H. Nakano, K. Suzumura, K. Urabe, A. R. West, Forth Ceram. Soc. 2 (1995) 391-398.

Google Scholar

[5] H. Hayashi, K. Urabe, K. Niihara, Key Engineering materials 161-163 (1999) 501-504.

Google Scholar

[6] L. Farber, I. Levin, A. Borisevichi, I. E. Grey, R. S. Roth, P. K. Davies, J. Solid State Chem. 166 (2002) 81-90.

Google Scholar

[7] A. Y. Borisevich, P. K. Davies, J. Am. Ceram. Soc. 85 (2002) 573-578.

Google Scholar

[8] Y. Yamamoto, H. Hayashi, T. Sekino, T. Nakayama, T. Kondo, M. Wada, T. Adachi, K. Niihara, Materials Research Innovations 7 (2003) 74-79.

DOI: 10.1080/14328917.2003.11784765

Google Scholar

[9] H. Hayashi, H. Nakano, J. Alloys and Compd. 502 (2010) 360-364.

Google Scholar

[10] H. Hayashi, H. Nakano, M. I. Jones, J. Ceram. Soc. Jpn. 118(3) (2010) 226-230.

Google Scholar

[11] Y. Yamamoto, T. Sekino, T. Kusunose, T. Nakayama, Y. Morimoto, S. Miyazawa, K. Niihara, J. Cry. Growth 264 (2004) 445-451.

DOI: 10.1016/j.jcrysgro.2003.12.022

Google Scholar

[12] Y. Yamamoto, T. Sekino, H. Hayashi, T. Nakayama, T. Kusunose, K. Niihara, Mater. Lett. 57 (2003) 2702-2706.

Google Scholar

[13] Y. Kinemuchi, H. Nakano, H. Kaga, S. Tanaka, K. Uematzu, K. Watari, J. Am. Ceram. Soc. 94 (2011) 2339-2343.

Google Scholar

[14] T. S. Suzuki, Y. Sakka, Scripta Materiallia 52 (2005) 583-586.

Google Scholar

[15] T. S. Suzuki, T. Uchikoshi, Y. Sakka, J. Europ. Ceram. Soc. 30 (2010) 2813-2717.

Google Scholar

[16] L. Zhang, J. Vleugels, O. V. Biest, J. Am. Ceram. Soc. 93(10) (2010) 3148-3152.

Google Scholar

[17] T. S. Suzuki, Y. Sakka, Jpn. J. Appl. Phys. 41 (2002) L1272-1274.

Google Scholar

[18] M. E. Villafuerte-castrejon, J. A. Garcia, E. Cisneros, R. Valenzuela, A. R. West, Br. Ceram. Trans. J. 83 (1984) 143-145.

Google Scholar

[19] H. Nakano, T. Saji, M. Yuasa, S. Miyake, M. Mabuchi, J. Ceram. Soc. Jpn. 119(11) (2011) 808-812.

Google Scholar