[1]
E. Cerri, M. Cabibbo, E. Evangelista, Mater. Sci. Eng. A 333 (2002) 208–217.
Google Scholar
[2]
B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37–45.
Google Scholar
[3]
E. Aghion, B. Bronfin, D. Eliezer, J. Mater. Process. Technol. 117(3) (2001) 381–385.
Google Scholar
[4]
F.H. Froes, D. Eliezer, E. Aghion, JOM 50(9) (1998) 30–34.
Google Scholar
[5]
R.C. Zeng, J. Zhang, W.J. Huang, W. Dietzel, K.U. Kainer, C. Blawert, W. Ke, Trans. Nonferrous Met. Soc. China 16 (2006) s763–s771.
DOI: 10.1016/s1003-6326(06)60297-5
Google Scholar
[6]
T. Nagasawa, M. Otsuka, T. Yokota, T. Ueki, Structure and mechanical properties of friction stir weld joints of magnesium alloy AZ31, H.I. Kaplan, J. Hryn, B. Clow, Editors, Magnesium Technology 2000, TMS, Warrendale (2000), p.383–387.
DOI: 10.1002/9781118808962.ch53
Google Scholar
[7]
S.W. Kalle, W.M. Thomas, E.D. Nicholas; K.U. Kainer, Editor, Weiheim, Wiley, VCH Verlag, GmbH (2000), p.175–190.
Google Scholar
[8]
R. Zettler, A.C. Blanco, J.F. dos Santos, S. Marya, The effect of process parameters and tool geometry on thermal field development and weld formation in friction stir welding of the alloy AZ31 and AZ61, N.R. Neelameggham, H.I. Daplan, B.R. Powell, Editors, Magnesium Technology, TMS, San Francisco (2005).
DOI: 10.1007/978-3-319-48099-2_86
Google Scholar
[9]
M.B. Kannan, W. Dietzel, R. Zeng, R. Zettler, J.F. dos Santos. Mater. Sci. Eng. A 460–461 (2007) 243.
Google Scholar
[10]
L. Commin, J.E. Masse, M. Dumont, L. Barrallier, Microstructure features of hot rolled AZ31 magnesium alloy for friction stir welding, K.U. Kainer, Editor, Proceedings of the 7th International Conference on Magnesium Alloys and their Applications, Weiheim, Wiley-VCH Verlag, GmbH (2006).
DOI: 10.1016/j.actamat.2008.09.011
Google Scholar
[11]
G.L. Song, A. Atrens, Adv. Eng. Mater. 5 (2003) 837–858.
Google Scholar
[12]
G.L. Song, A. Atrens, Adv. Eng. Mater. 1 (1999) 11–33.
Google Scholar
[13]
E. Ghali, W. Dietzel, K.U. Kainer, J. Mater. Eng. Perform. 13(1) (2004) 7–23.
Google Scholar
[14]
G. Song. Adv. Eng. Mater. 7 (2005), 563–586.
Google Scholar
[15]
J. Chen, J.Q. Wang, E.H. Han, W. Ke, Corros. Sci. 50 (2008) 449–1459.
Google Scholar
[16]
M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Cebelcor, Brussesls, 1974, p.141.
Google Scholar
[17]
Boukamp, Equivalent Circuit Software, Users Manual, The Netherlands University of Twente, 1988, p.6–26.
Google Scholar
[18]
H.H. Uhlig, Corrosion and Corrosion Control, John Wiley & Sons Inc., New York, (1963).
Google Scholar
[19]
PARK S H C, SATO Y S, KOKAWA H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J]. Scripta Marerialia, 49(2), (2003), 161−166.
DOI: 10.1016/s1359-6462(03)00210-0
Google Scholar
[20]
G. Song, A.L. Bowles, D.H. StJohn, Mater. Sci. Eng. A 366 (2004) 74–86.
Google Scholar
[21]
R. Ambat, N.N. Aung, W. Zhou, Corros. Sci. 42 (2000) 1433–1455.
Google Scholar
[22]
G. Ben Hamu, D. Eliezer, L. Wagner, Journal of Alloys and Compounds 468 (2009) 222–229.
Google Scholar