[1]
T.M. Pollock, Weight loss with magnesium alloys, Science 328 (2010) 986-987.
Google Scholar
[2]
E. Aghion, B. Bronfin, D. Eliezer, The role of the magnesium industry in protecting the environment, J. Mater. Process. Technol. 117 (2001) 381-385.
DOI: 10.1016/s0924-0136(01)00779-8
Google Scholar
[3]
B.H. Lee, S.H. Park, S.G. Hong, K.T. Park, C.S. Lee, Role of initial texture on the plastic anisotropy of Mg-3Al-1Zn alloy at various temperatures, Mater. Sci. Eng. A 528 (2011) 1162-1172.
DOI: 10.1016/j.msea.2010.10.065
Google Scholar
[4]
L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Influence of {102} extension twinning on the flow behavior of AZ31 Mg alloy, Mater. Sci. Eng. A 445-446 (2007) 302-309.
DOI: 10.1016/j.msea.2006.09.069
Google Scholar
[5]
S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, J. Homeyer, Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading, Acta Mater. 54 (2006) 549-562.
DOI: 10.1016/j.actamat.2005.09.024
Google Scholar
[6]
S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R.G. Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys, Acta Mater. 59 (2011) 429-439.
DOI: 10.1016/j.actamat.2010.08.031
Google Scholar
[7]
M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Deformation twinning in AZ31: Influence on strain hardening and texture evolution, Acta Mater. 58 (2010) 6230-6242.
DOI: 10.1016/j.actamat.2010.07.041
Google Scholar
[8]
A.A. Salem, S.R. Kalidindi, R.D. Doherty, S.L. Semiatin, Strain hardening due to deformation twinning in α-titanium: mechanisms, Metall. Mater. Trans. A 37 (2006) 259-268.
DOI: 10.1007/s11661-006-0171-2
Google Scholar
[9]
C.H. Cáceres, P. Lukác, A. Blake, Strain hardening due to {102} twinning in pure magnesium, Philos. Mag. 88 (2008) 991-1003.
DOI: 10.1080/14786430701881211
Google Scholar
[10]
G. Proust, C.N. Tomé, G.C. Kaschner, Modeling texture, twinning and hardening evolution during deformation of hexagonal materials, Acta Mater. 55 (2007) 2137-2148.
DOI: 10.1016/j.actamat.2006.11.017
Google Scholar
[11]
A. Jiang, A. Godfrey, W. Liu, Q. Liu, Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31, Mater. Sci. Eng. A 483-484 (2008) 576-579.
DOI: 10.1016/j.msea.2006.07.175
Google Scholar
[12]
Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskes, S.N. Mathaudhu, Dislocation-twin interactions in nanocrystalline fcc metals, Acta Mater. 59 (2011) 812-821.
DOI: 10.1016/j.actamat.2010.10.028
Google Scholar
[13]
S. Begum, D.L. Chen, S. Xu, A.A. Luo, Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy, Metall. Mater. Trans. A 39 (2008) 3014-3026.
DOI: 10.1007/s11661-008-9677-0
Google Scholar
[14]
S. Begum, D.L. Chen, S. Xu, A. A Luo, Low cycle fatigue properties of an extruded AZ31 magnesium alloy, Inter. J. Fatigue 31 (2009) 726-735.
DOI: 10.1016/j.ijfatigue.2008.03.009
Google Scholar
[15]
S. Begum, D.L. Chen, S. Xu, A.A. Luo, Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy, Mater. Sci. Eng. A 517 (2009) 334-343.
DOI: 10.1016/j.msea.2009.04.051
Google Scholar
[16]
Y.C. Xin, M.Y. Wang, Z. Zeng, M.G. Nie, Q. Liu, Strengthening and toughening of magnesium alloy by {102} extension twins, Scripta Mater. 66 (2012) 25-28.
DOI: 10.1016/j.scriptamat.2011.09.033
Google Scholar
[17]
L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, P.K. Liaw, The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy AZ31B, Mater. Sci. Eng. A 527 (2010) 7057-7067.
DOI: 10.1016/j.msea.2010.07.047
Google Scholar
[18]
N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Strain hardening behavior of a friction stir welded magnesium alloy, Scripta Mater. 57 (2007) 1004-1007.
DOI: 10.1016/j.scriptamat.2007.08.001
Google Scholar
[19]
D. Sarker, D.L. Chen, Detwinning and strain hardening of an extruded magnesium alloy during compression, Scripta Mater. 67 (2012) 165-168.
DOI: 10.1016/j.scriptamat.2012.04.007
Google Scholar
[20]
D. Sarker, D.L. Chen, Texture transformation in an extruded magnesium alloy under pressure, Mater. Sci. Eng. A 582 (2013) 63-67.
DOI: 10.1016/j.msea.2013.06.048
Google Scholar
[21]
A.A. Salem, S.R. Kalidindi, R.D. Doherty, S.L. Semiatin, Strain hardening due to deformation twinning in α-titanium: mechanisms, Metall. Mater. Trans. A 37 (2006) 259-268.
DOI: 10.1007/s11661-006-0171-2
Google Scholar
[22]
B.S. Wang, R.L. Xin, G.J. Huang, Q. Liu, Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression, Mater. Sci. Eng. A 534 (2012) 588-593.
DOI: 10.1016/j.msea.2011.12.013
Google Scholar
[23]
R.B. Figueiredo, Z. Száraz, Z. Trojanová, P. Lukáč, T.G. Langdon, Significance of twinning in the anisotropic behavior of a magnesium alloy processed by equal-channel angular pressing, Scripta Mater. 63 (2010) 504-507.
DOI: 10.1016/j.scriptamat.2010.05.016
Google Scholar
[24]
E.W. Kelley, W.F. Hosford, Plane-strain compression of magnesium and magnesium alloy crystals, Trans. Metall. Soc. AIME 242 (1968) 5-13.
Google Scholar
[25]
D. Sarker, D.L. Chen, Texture development in an extruded Mg alloy during compression along the transverse direction, in: N. Hort, S.N. Mathaudhu, N.R. Neelameggham, M. Alderman (Eds. ), Magnesium Technology 2013, John Wiley & Sons, Inc., New Jersey, 2013, pp.313-316.
DOI: 10.1002/9781118663004.ch52
Google Scholar
[26]
F.A. Mirza, D.L. Chen, D.J. Li, X.Q. Zeng, Low cycle fatigue of a rare-earth containing extruded magnesium alloy, Mater. Sci. Eng. A 575 (2013) 65-73.
DOI: 10.1016/j.msea.2013.03.041
Google Scholar