The Orientation Dependence of Strain Hardening and Texture Development in an Extruded Magnesium Alloy

Article Preview

Abstract:

Extruded magnesium alloys showed mechanical anisotropy due to the development of strong crystallographic textures during forming processes. In the present study the strain hardening behavior and texture evolution of an extruded AM30 magnesium alloy were studied in compression using cylindrical samples oriented at angles of 0°, 15°, 30°, 45° and 90° from the extrusion direction (ED). The yield strength decreased with increasing angle up to 45° and then increased at 90° from the ED, while the ultimate compressive strength exhibited a reverse trend. Both hardening capacity and fracture strain first increased from 0° to 45° and then decreased at 90° from the ED. The strain hardening behavior was directly related to the texture change and twinning, which played a key role in accommodating the compressive deformation, as the c-axes in most grains were observed to rotate always towards the anti-compression direction, irrespective of the sample orientation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

363-368

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.M. Pollock, Weight loss with magnesium alloys, Science 328 (2010) 986-987.

Google Scholar

[2] E. Aghion, B. Bronfin, D. Eliezer, The role of the magnesium industry in protecting the environment, J. Mater. Process. Technol. 117 (2001) 381-385.

DOI: 10.1016/s0924-0136(01)00779-8

Google Scholar

[3] B.H. Lee, S.H. Park, S.G. Hong, K.T. Park, C.S. Lee, Role of initial texture on the plastic anisotropy of Mg-3Al-1Zn alloy at various temperatures, Mater. Sci. Eng. A 528 (2011) 1162-1172.

DOI: 10.1016/j.msea.2010.10.065

Google Scholar

[4] L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Influence of {102} extension twinning on the flow behavior of AZ31 Mg alloy, Mater. Sci. Eng. A 445-446 (2007) 302-309.

DOI: 10.1016/j.msea.2006.09.069

Google Scholar

[5] S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, J. Homeyer, Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading, Acta Mater. 54 (2006) 549-562.

DOI: 10.1016/j.actamat.2005.09.024

Google Scholar

[6] S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R.G. Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys, Acta Mater. 59 (2011) 429-439.

DOI: 10.1016/j.actamat.2010.08.031

Google Scholar

[7] M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, S.R. Kalidindi, Deformation twinning in AZ31: Influence on strain hardening and texture evolution, Acta Mater. 58 (2010) 6230-6242.

DOI: 10.1016/j.actamat.2010.07.041

Google Scholar

[8] A.A. Salem, S.R. Kalidindi, R.D. Doherty, S.L. Semiatin, Strain hardening due to deformation twinning in α-titanium: mechanisms, Metall. Mater. Trans. A 37 (2006) 259-268.

DOI: 10.1007/s11661-006-0171-2

Google Scholar

[9] C.H. Cáceres, P. Lukác, A. Blake, Strain hardening due to {102} twinning in pure magnesium, Philos. Mag. 88 (2008) 991-1003.

DOI: 10.1080/14786430701881211

Google Scholar

[10] G. Proust, C.N. Tomé, G.C. Kaschner, Modeling texture, twinning and hardening evolution during deformation of hexagonal materials, Acta Mater. 55 (2007) 2137-2148.

DOI: 10.1016/j.actamat.2006.11.017

Google Scholar

[11] A. Jiang, A. Godfrey, W. Liu, Q. Liu, Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31, Mater. Sci. Eng. A 483-484 (2008) 576-579.

DOI: 10.1016/j.msea.2006.07.175

Google Scholar

[12] Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskes, S.N. Mathaudhu, Dislocation-twin interactions in nanocrystalline fcc metals, Acta Mater. 59 (2011) 812-821.

DOI: 10.1016/j.actamat.2010.10.028

Google Scholar

[13] S. Begum, D.L. Chen, S. Xu, A.A. Luo, Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy, Metall. Mater. Trans. A 39 (2008) 3014-3026.

DOI: 10.1007/s11661-008-9677-0

Google Scholar

[14] S. Begum, D.L. Chen, S. Xu, A. A Luo, Low cycle fatigue properties of an extruded AZ31 magnesium alloy, Inter. J. Fatigue 31 (2009) 726-735.

DOI: 10.1016/j.ijfatigue.2008.03.009

Google Scholar

[15] S. Begum, D.L. Chen, S. Xu, A.A. Luo, Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy, Mater. Sci. Eng. A 517 (2009) 334-343.

DOI: 10.1016/j.msea.2009.04.051

Google Scholar

[16] Y.C. Xin, M.Y. Wang, Z. Zeng, M.G. Nie, Q. Liu, Strengthening and toughening of magnesium alloy by {102} extension twins, Scripta Mater. 66 (2012) 25-28.

DOI: 10.1016/j.scriptamat.2011.09.033

Google Scholar

[17] L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, P.K. Liaw, The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy AZ31B, Mater. Sci. Eng. A 527 (2010) 7057-7067.

DOI: 10.1016/j.msea.2010.07.047

Google Scholar

[18] N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Strain hardening behavior of a friction stir welded magnesium alloy, Scripta Mater. 57 (2007) 1004-1007.

DOI: 10.1016/j.scriptamat.2007.08.001

Google Scholar

[19] D. Sarker, D.L. Chen, Detwinning and strain hardening of an extruded magnesium alloy during compression, Scripta Mater. 67 (2012) 165-168.

DOI: 10.1016/j.scriptamat.2012.04.007

Google Scholar

[20] D. Sarker, D.L. Chen, Texture transformation in an extruded magnesium alloy under pressure, Mater. Sci. Eng. A 582 (2013) 63-67.

DOI: 10.1016/j.msea.2013.06.048

Google Scholar

[21] A.A. Salem, S.R. Kalidindi, R.D. Doherty, S.L. Semiatin, Strain hardening due to deformation twinning in α-titanium: mechanisms, Metall. Mater. Trans. A 37 (2006) 259-268.

DOI: 10.1007/s11661-006-0171-2

Google Scholar

[22] B.S. Wang, R.L. Xin, G.J. Huang, Q. Liu, Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression, Mater. Sci. Eng. A 534 (2012) 588-593.

DOI: 10.1016/j.msea.2011.12.013

Google Scholar

[23] R.B. Figueiredo, Z. Száraz, Z. Trojanová, P. Lukáč, T.G. Langdon, Significance of twinning in the anisotropic behavior of a magnesium alloy processed by equal-channel angular pressing, Scripta Mater. 63 (2010) 504-507.

DOI: 10.1016/j.scriptamat.2010.05.016

Google Scholar

[24] E.W. Kelley, W.F. Hosford, Plane-strain compression of magnesium and magnesium alloy crystals, Trans. Metall. Soc. AIME 242 (1968) 5-13.

Google Scholar

[25] D. Sarker, D.L. Chen, Texture development in an extruded Mg alloy during compression along the transverse direction, in: N. Hort, S.N. Mathaudhu, N.R. Neelameggham, M. Alderman (Eds. ), Magnesium Technology 2013, John Wiley & Sons, Inc., New Jersey, 2013, pp.313-316.

DOI: 10.1002/9781118663004.ch52

Google Scholar

[26] F.A. Mirza, D.L. Chen, D.J. Li, X.Q. Zeng, Low cycle fatigue of a rare-earth containing extruded magnesium alloy, Mater. Sci. Eng. A 575 (2013) 65-73.

DOI: 10.1016/j.msea.2013.03.041

Google Scholar