The Effect of Ce Addition on the Creep Resistant Mg-Sr-Mn Alloys

Article Preview

Abstract:

Recent studies on Mg-Sr-Mn system exhibited the importance of α-Mn dynamic precipitation during creep on creep strengthening. In the present work, the effect of trace levels of Ce addition on the creep resistance of Mg-Sr-Mn system was investigated. The creep deformation in the quaternary alloys (Mg-Sr-Mn-Ce) were four times lower than the deformation seen in ternary alloys (Mg-Sr-Mn). Dynamic co-precipitation of Mg12Ce and α-Mn was mainly responsible for creep strengthening. Additionally, the presence of a trace amount of Sr in the Mg matrix affected the growth of the creep-induced Mg12Ce precipitates which were found to be lying parallel to the []Mg direction. This growth orientation is different from the orientation of Mg12Ce precipitates typically observed in Mg-Ce binary and Mg-Ce-Mn ternary alloys where plate-like precipitates lie along []Mg.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

358-362

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Celikin, F. Zarandi, D. Sediako, M. O. Pekguleryuz, Can. Metall. Q. 48 (2009) 419-432.

Google Scholar

[2] A. A. Luo, Int. Mater. Rev. 49 (2004) 13-30.

Google Scholar

[3] M. Pekguleryuz, M. Celikin, Int. Mater. Rev. 55 (2010) 197-217.

Google Scholar

[4] G. V. Raynor, The Physical Metallurgy of Magnesium and Its Alloys, Pergamon Press, London, (1959).

Google Scholar

[5] L. L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals Structure and Properties, Taylor and Francis, (2003).

DOI: 10.1201/9781482265163

Google Scholar

[6] M. Celikin, A.A. Kaya, R. Gauvin, M. Pekguleryuz, Scripta Mater. 66 (2012) 737-740.

DOI: 10.1016/j.scriptamat.2012.01.043

Google Scholar

[7] M. A. Easton, M. A. Gibson, D. Qiu, S. M. Zhu, J. Grobner, R. Schmid-Fetzer, J. F. Nie, M. X. Zhang, Acta Mater. 60 (2012) 4420-4430.

Google Scholar

[8] T. L. Chia, M. A. Easton, S. M. Zhu, M. A. Gibson, N. Birbilis, J. F. Nie, Intermetallics 17 (2009) 481-490.

DOI: 10.1016/j.intermet.2008.12.009

Google Scholar

[9] S. M. Zhu, M. A. Gibson, M. A. Easton, J. F. Nie, Scripta Mater. 63 (2010) 698-703.

Google Scholar

[10] D. Weiss, A. A. Kaya, E. Aghion, D. Eliezer, J. Mater. Sci. 37 (2002) 5371-5379.

Google Scholar

[11] M. Celikin, A. A. Kaya, M. Pekguleryuz, Mater. Sci. Eng. A 550 (2012) 39-50.

Google Scholar

[12] M. Celikin, M. Pekguleryuz, Mater. Sci. Eng. A 556 (2012) 911-920.

Google Scholar

[13] Binary Alloy Phase Diagrams, in: ASM Metals Handbook Volume 3 Alloy Phase Diagrams, ASM International, (1992).

DOI: 10.1007/bf02868878

Google Scholar

[14] C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I. -H. Jung, Y. -B. Kang, J. Melancon, A.D. Pelton, C. Robelin, S. Petersen, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 33 (2009) 295-311.

DOI: 10.1016/j.calphad.2008.09.009

Google Scholar

[15] M. Celikin, A. A. Kaya, M. Pekguleryuz, Mater. Sci. Eng. A 534 (2012) 129-141.

Google Scholar

[16] L. Y. Wei, G. L. Dunlop, H. Westengen, J. Mater. Sci. 31 (1996) 387-397.

Google Scholar