[1]
G. Lutjering, J.C. Williams, Titanium, second ed., Springer-Verlag, Berlin, (2007).
Google Scholar
[2]
H. Beladi, G.L. Kelly, P.D. Hodgson, Ultrafine grained structure formation in steels using dynamic strain induced transformation processing, Int. Mater. Rev. 52 (2007) 14-28.
DOI: 10.1179/174328006x102538
Google Scholar
[3]
I. Weiss, F.H. Froes, D. Eylon, G.E. Welsch, Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing, Metall. Trans. A 17 (1986) 1935-(1947).
DOI: 10.1007/bf02644991
Google Scholar
[4]
E.B. Shell, S.L. Semiatin, Effect of initial microstructure on plastic flow and dynamic globularization during hot working of Ti-6Al-4V, Metall. Mater. Trans. A 30 (1999) 3219-3229.
DOI: 10.1007/s11661-999-0232-4
Google Scholar
[5]
S.L. Semiatin, V. Seetharaman, I. Weiss, Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure, Mater. Sci. Eng. A 263(1999) 257-271.
DOI: 10.1016/s0921-5093(98)01156-3
Google Scholar
[6]
S.L. Semiatin, T.R. Bieler, The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure, Acta Mater. 49 (2001) 3565-3573.
DOI: 10.1016/s1359-6454(01)00236-1
Google Scholar
[7]
S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin, Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing, Acta Mater. 59 (2011) 4138-4150.
DOI: 10.1016/j.actamat.2011.03.037
Google Scholar
[8]
T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, Y.V.R.K. Prasad, Hot deformation mechanisms in ELI grade Ti-6A1-4V, Scripta Mater. 41 (1999) 283-288.
DOI: 10.1016/s1359-6462(99)00163-3
Google Scholar
[9]
C.H. Park, Y.G. Ko, J.W. Park, C.S. Lee, Enhanced superplasticity utilizing dynamic globularization of Ti-6Al-4V alloy, Mater. Sci. Eng. A 496 (2008) 150-158.
DOI: 10.1016/j.msea.2008.05.001
Google Scholar
[10]
S.C. Wang, M. Aindow, M.J. Starink, Effect of self-accommodation on α/α boundary populations in pure titanium, Acta Mater. 51 (2003) 2485-2503.
DOI: 10.1016/s1359-6454(03)00035-1
Google Scholar
[11]
J.C. Williams, R. Taggart, D.H. Polonis, The morphology and substructure of Ti-Cu martensite, Metal. Trans. 1 (1970) 2265-2270.
DOI: 10.1007/bf02643444
Google Scholar
[12]
V. Randle, G.S. Rohrer, Y. Hu, Five-parameter grain boundary analysis of a titanium alloy before and after low-temperature annealing, Scripta Mater. 58 (2008) 183-186.
DOI: 10.1016/j.scriptamat.2007.09.044
Google Scholar
[13]
H. Beladi, P. Cizek, P.D. Hodgson, Dynamic recrystallization of austenite in Ni-30 Pct Fe model alloy: Microstructure and texture evolution, Metal. Mater. Trans. A 40 (2009) 1175-1189.
DOI: 10.1007/s11661-009-9799-z
Google Scholar
[14]
F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Second ed., Elsevier, Oxford, (2004).
Google Scholar
[15]
É. Martin, J.J. Jonas, Evolution of microstructure and microtexture during the hot deformation of Mg-3% Al, Acta Mater. 58 (2010) 4253-4266.
DOI: 10.1016/j.actamat.2010.04.017
Google Scholar
[16]
A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater. 49 (2001) 1199-1207.
DOI: 10.1016/s1359-6454(01)00020-9
Google Scholar