Microstructure Evolution of Martensitic Ti-6Al-4V Alloy during Warm Deformation

Article Preview

Abstract:

The microstructure evolution of martensitic Ti-6Al-4V alloy was investigated through uniaxial hot compression at 700°C and a strain rate of 10-3 s-1. A combination of scanning electron microscopy observation in conjunction with high resolution electron back scattered diffraction (EBSD) was used to characterize the microstructure in detail. The development of the microstructure displayed continuous fragmentation of martensitic laths with increasing strain (i.e. continuous dynamic recrystallization), concurrently with decomposition of supersaturated martensite resulting in the formation of equiaxed grains. At a strain of 0.8, an ultrafine equiaxed grained structure with mostly high angle grain boundaries was successfully obtained. The current work proposes a novel approach to produce equiaxed ultrafine grains in a Ti-6Al-4V alloy through thermomechanical processing of a martensitic starting microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

679-684

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lutjering, J.C. Williams, Titanium, second ed., Springer-Verlag, Berlin, (2007).

Google Scholar

[2] H. Beladi, G.L. Kelly, P.D. Hodgson, Ultrafine grained structure formation in steels using dynamic strain induced transformation processing, Int. Mater. Rev. 52 (2007) 14-28.

DOI: 10.1179/174328006x102538

Google Scholar

[3] I. Weiss, F.H. Froes, D. Eylon, G.E. Welsch, Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing, Metall. Trans. A 17 (1986) 1935-(1947).

DOI: 10.1007/bf02644991

Google Scholar

[4] E.B. Shell, S.L. Semiatin, Effect of initial microstructure on plastic flow and dynamic globularization during hot working of Ti-6Al-4V, Metall. Mater. Trans. A 30 (1999) 3219-3229.

DOI: 10.1007/s11661-999-0232-4

Google Scholar

[5] S.L. Semiatin, V. Seetharaman, I. Weiss, Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure, Mater. Sci. Eng. A 263(1999) 257-271.

DOI: 10.1016/s0921-5093(98)01156-3

Google Scholar

[6] S.L. Semiatin, T.R. Bieler, The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure, Acta Mater. 49 (2001) 3565-3573.

DOI: 10.1016/s1359-6454(01)00236-1

Google Scholar

[7] S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin, Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing, Acta Mater. 59 (2011) 4138-4150.

DOI: 10.1016/j.actamat.2011.03.037

Google Scholar

[8] T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, Y.V.R.K. Prasad, Hot deformation mechanisms in ELI grade Ti-6A1-4V, Scripta Mater. 41 (1999) 283-288.

DOI: 10.1016/s1359-6462(99)00163-3

Google Scholar

[9] C.H. Park, Y.G. Ko, J.W. Park, C.S. Lee, Enhanced superplasticity utilizing dynamic globularization of Ti-6Al-4V alloy, Mater. Sci. Eng. A 496 (2008) 150-158.

DOI: 10.1016/j.msea.2008.05.001

Google Scholar

[10] S.C. Wang, M. Aindow, M.J. Starink, Effect of self-accommodation on α/α boundary populations in pure titanium, Acta Mater. 51 (2003) 2485-2503.

DOI: 10.1016/s1359-6454(03)00035-1

Google Scholar

[11] J.C. Williams, R. Taggart, D.H. Polonis, The morphology and substructure of Ti-Cu martensite, Metal. Trans. 1 (1970) 2265-2270.

DOI: 10.1007/bf02643444

Google Scholar

[12] V. Randle, G.S. Rohrer, Y. Hu, Five-parameter grain boundary analysis of a titanium alloy before and after low-temperature annealing, Scripta Mater. 58 (2008) 183-186.

DOI: 10.1016/j.scriptamat.2007.09.044

Google Scholar

[13] H. Beladi, P. Cizek, P.D. Hodgson, Dynamic recrystallization of austenite in Ni-30 Pct Fe model alloy: Microstructure and texture evolution, Metal. Mater. Trans. A 40 (2009) 1175-1189.

DOI: 10.1007/s11661-009-9799-z

Google Scholar

[14] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Second ed., Elsevier, Oxford, (2004).

Google Scholar

[15] É. Martin, J.J. Jonas, Evolution of microstructure and microtexture during the hot deformation of Mg-3% Al, Acta Mater. 58 (2010) 4253-4266.

DOI: 10.1016/j.actamat.2010.04.017

Google Scholar

[16] A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater. 49 (2001) 1199-1207.

DOI: 10.1016/s1359-6454(01)00020-9

Google Scholar