Thermo-Mechanically Controlled Processed Ultrahigh Strength Steels

Article Preview

Abstract:

A low-carbon, titanium and niobium (Ti-Nb) bearing and a low-carbon titanium, niobium and copper (Ti-Nb-Cu) bearing ultra high strength steel have been thermo-mechanically processed on a laboratory scale unit. Evolution of microstructure and mechanical properties of the above air cooled steels have been studied at different finish rolling temperatures (FRTs). Microstructural characterization reveals largely a mixture of granular bainite and bainitic ferrite along with the precipitation of microalloying carbide/carbonitride particles and/or Cu-rich precipitates. (Ti-Nb) bearing steel yields higher yield strength (1114-1143 MPa) along with higher tensile strength (1591-1688 MPa) and moderate ductility (12-13%) as compared to (Ti-Nb-Cu) bearing steel having yield strength (934-996 MPa) combined with tensile strength (1434-1464 MPa) and similar ductility (13%) for the selected range of 850-750°C FRT. Due to higher strength-ductility combinations, these present investigated steels can be regarded as the replacement material for ballistic applications as well as other sectors like defense, pipeline, cars, pressure vessels, ships, offshore platforms, aircraft undercarriages and rocket motor casings etc. Key words: Thermo-mechanical controlled processing, ultra high strength steel, microstructure, mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

685-691

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. K. Jena, B. Mishra, M. Ramesh Babu, A. Babu, A. K. Singh, K. Siva Kumar, T. Balakrishna Bhat, Int. J. Impact Engineering, 37 (2010) 242–249.

Google Scholar

[2] Shi, Zengmin, Liu, Kai, Wang, Maoqiu, Shi, Jie, Dong, Han, Pu, Jian, Chi, Bo, Zhang Yisheng Li, Jian, Mater. Sci. Eng. A 528 (2011) 3681–3688.

Google Scholar

[3] K. Mori, S. Maki, Y. Tanaka, Annals of the CIRP 54/1/2005, 209-212.

Google Scholar

[4] T. V. Philip, Ultra High Strength Steel, Properties and Selection; Iron and Steels, In: Metal Handbook (Vol. 1, Ninth Edition), American Society for Metals, Ohio (1978) pp.421-443, ISBN 0-87170-007-7.

Google Scholar

[5] M. Merklein, J. Lechler, J. Mater. Proc. Technol. 177 (2006) 452–455.

Google Scholar

[6] Y. Tomita, Metall. Trans. 22A (1991) (5) 1093-1102.

Google Scholar

[7] I. S. Kim, U. Reichel, W. Dahl, Steel Res. 58 (1987) 186-190.

Google Scholar

[8] M. Mizui, M. Takahashi, Iron Steel Maker. 9 (1992) 31-38.

Google Scholar

[9] Plastic Deformation & Steelmaking Study Groups of Associazione Italiana di Metallurgia (AIM) (2008) In: 3rd International Conference on Thermomechanical Processing of Steels, Padua, Italy; URL: http: /www. aimnet. it/allpdf/TMP. pdf.

Google Scholar

[10] W. G. Huang, H. S. Fang, Y. K. Zheng, Trans. Met. Heat Treat. 18 (1997) (1) 8-11.

Google Scholar

[11] Y. Ito, K. Bessyo, A Prediction of Welding Procedure to Avoid Heat Affected Zone Cracking, 1969, IIW Doc. IX, p.631–669.

Google Scholar

[12] R. Shukla, S. K. Das, B. Ravi Kumar, S. K. Ghosh, S. Kundu, S. Chatterjee, Metall. Mater. Trans. 43A (2012) 4835 - 4845.

Google Scholar

[13] Information on http: /carl-zeiss-vision-axiovision-viewer. software. informer. com/4. 8.

Google Scholar

[14] N. Tsuji, R. Ueji, Y. Minamino, Y. Saito, Scr. Mater. 46 (2002) 305-310.

Google Scholar

[15] J. Chen, S. Tang, Zhen-Yu Liu, Guo-Dong Wang, Mater. Sci. Eng. A 559 (2013) 241–249.

Google Scholar

[16] M. Jung, S-J Lee, Y- K Lee, Metall. Mater. Trans. 40A (2009) 551-559.

Google Scholar

[17] P. S. Bandyopadhyay, S. Kundu, S. K. Ghosh, S. Chatterjee, Metall. Mater. Trans. A 42 (2011) 1051-1061.

Google Scholar

[18] P. S. Bandyopadhyay, S. K. Ghosh, S. Kundu, S. Chatterjee, Metall. Mater. Trans. A 42 (2011) 2742-2752.

Google Scholar

[19] S. Chatterjee, S. K. Ghosh, Trans. Indian Inst. Met. 66 (2013) 611–619.

Google Scholar

[20] S. W. Thompson, G. Krauss, Metall. Mater. Trans. A 27 (1996) 1573-1588.

Google Scholar

[21] K. Nishioka, K. Ichikawa, Sci. Technol. Adv. Mater. 3 (2012) 1-20.

Google Scholar

[22] Information on http: /www. chasealloys. co. uk/steel/alloying-elements-in-steel/#nickel.

Google Scholar

[23] M. -C. Zhao, Ke Yang, F. -R. Xiao, Y. -Y. Shan, Mater. Sci. Eng. A355 (2003) 126–136.

Google Scholar

[24] T. Abe, M. Kurihara, H. Tagawa, K. Tsukada, Trans. ISIJ 27 (1987) 478-484.

Google Scholar