From Micro to Nano Scale Structure by Plastic Deformations

Article Preview

Abstract:

Nowadays, the strategy for improving of mechanical properties in metals is not oriented to alloying followed by heat treatment. An effective way how to improve the mechanical properties of metals is focused on the research looking for some additional structural abilities of steels. Structural refinement is one of the ways. Refinement of the austenitic grain size (AGS) carried out through plastic deformation in a spontaneous recrystallization region of austenite, formation of AGS by plastic deformations in a non-recrystallized region of austenite will be considered as potential ways for AGS refinement. After classic methods of plastic deformations, next structure refinement can be obtained by an application of severe plastic deformation (SPD) methods.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

842-847

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Pernis and J. Kasala, Acta Metall. Slovaca 17 (2011) 150-157.

Google Scholar

[2] T. Kvačkaj, J. Bacsó, J. Bidulská, M. Lupták, I. Pokorný, M. Kvačkaj and M. Vlado, Acta Metall. Slovaca 16 (2010) 268-276.

Google Scholar

[3] L. Némethová, T. Kvačkaj, M. Fujda, R. Mišičko, J. Tiža and M. Kvačkaj, Acta Metall. Slovaca 16 (2010) 102-108.

Google Scholar

[4] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskii and V.I. Kopylov, Izvestia Akademii nauk SSSR, Metally (1981) 115-123.

Google Scholar

[5] J.W. Christian and S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.

Google Scholar

[6] Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Keckés and S.N. Mathaudhu, Acta Mater. 59 (2011) 812-821.

Google Scholar

[7] E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu and K. Lu, Appl. Phys. Lett. 85 (2004) 493213.

Google Scholar

[8] Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin and K. Lu, Scr. Mater. 52 (2005) 989-994.

Google Scholar

[9] L. Lu, R. Schwaiter, Z.W. Shan, M. Dao, K. Lu and S. Suresh, Acta Mater. 53 (2005) 2169-2179.

Google Scholar

[10] Y.T. Zhu and T.G. Langdon, Mater. Sci. Eng. A 409 (2005) 234-242.

Google Scholar

[11] C.S. Smith, Trans. Metall. Soc. AIME 175 (1948) 15-51.

Google Scholar

[12] J.E. Burke and D. Turnbull, Prog. Met. Phys. 3 (1952) 220-292.

Google Scholar

[13] H.V. Atkinson, Acta Metall. 6 (1988) 469-491.

Google Scholar

[14] F.J. Humphreys and M. Hartherly, Recrystallization and related annealing phenomena, second ed., Elsevier, Oxford, (2004).

Google Scholar

[15] Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer and Y.T. Zhu, Appl. Phys. Lett. 94 (2009) 011908.

Google Scholar

[16] V.Y. Novikov, Int. J. Mat. Res. 102 (2011) 446-451.

Google Scholar

[17] A.J. Haslam, S.R. Phillpot, D. Wolf, D. Moldovan and H. Gleiter, Mater. Sci. Eng. A, 318 (2001) 293-312.

Google Scholar

[18] M. Kvačkaj, T. Kvačkaj, A. Kováčová, R. Kočiško, J. Bacsó, Acta Metall. Slovaca 16 (2010) 84-90.

DOI: 10.12776/ams.v20i3.359

Google Scholar

[19] Kvackaj T., Mamuzic I.: ISIJ INTERNATIONAL, vol. 38, No. 11, 1998, pp.1270-1276.

Google Scholar

[20] T. Kvackaj, M. Kvackaj, V. Stoyka, R. Kocisko, J. Bidulska and J. Bacso, Mater. Sci. Forum 667-669 (2011) 133-137.

Google Scholar