Surface Roughness in Alumina Thin Film Deposited on Silica Using Oblique Incidence

Article Preview

Abstract:

The main characteristics of a surface are physical and chemical structure, surface tension and surface roughness. Surface roughness is one of the critical factors, which could cause instability in quality performance. In this paper, surface roughness of alumina thin films deposited on a silicon substrate by using electron beam evaporation with oblique angle deposition were studied. It has been found that the surface roughness of the alumina thin films was dependent on the substrate temperature, the deposition rate, the film thickness and the inclined angle. The experimental results showed that increasing the substrate temperature reduced the surface roughness at a low inclined angle and enhanced the surface roughness at a high inclined angle, and the surface roughness increased with increasing deposition rate and film thickness. By choosing the appropriate film preparation parameters, the film surface roughness was effectively controlled.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

373-377

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Xia, Q. Xu, P. Guo, R. Wu, Laser-induced damage characteristic of porous alumina optical films, Opt. Commun. 284(2011) 4033-4037.

DOI: 10.1016/j.optcom.2011.04.011

Google Scholar

[2] S. Liu, N. Hu, G. Yamamoto, Y. Cai, Y. Zhang, Y. Liu, Y. Li, T. Hashida, H. Fukunaga, Investigation on CNT/alumina interface properties using molecular mechanics simulations, Carbon 49(2011) 3701-3704.

DOI: 10.1016/j.carbon.2011.04.059

Google Scholar

[3] G. Drobychev, A. Barysevich, K. Delendik, P. Nédélec, D. Sillou, O. Voitik, Advances in anodic alumina MCP development, Nucl. Instrum. Meth. A 610(2009) 246-248.

DOI: 10.1016/j.nima.2009.05.076

Google Scholar

[4] C. Adelmann, D. Cuypers, M. Tallarida, L. N. J. Rodriguez, A. De Clercq, D. Friedrich, T. Conard, A. Delabie, J. W. Seo, J.P. Locquet, S. De Gendt, D. Schmeisser, S. Van Elshocht, M. Caymax, Surface chemistry and interface formation during the atomic layer deposition of alumina from trimethylaluminum and water on indium phosphide, Chem. Mater. 25(2013) 1078-1091.

DOI: 10.1021/cm304070h

Google Scholar

[5] K.Bordo, H.G. Rubahn, Effect of deposition rate on structure and surface morphology of thin evaporated Al films on dielectrics and semiconductors, Mater. Sci.-Medzg. 18(2012) 313-317.

DOI: 10.5755/j01.ms.18.4.3088

Google Scholar

[6] O.Sarikaya, Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process, Surf. Coat. Technol. 190(2005) 388-393.

DOI: 10.1016/j.surfcoat.2004.02.007

Google Scholar

[7] A. S. Mata, S. C. Ferreira, Jr., I. R. B. Ribeiro, S. O. Ferreira, Anomalous scaling and super-roughness in the growth of CdTe polycrystalline films, Phys. Rev. B 78(2008) 115305.

DOI: 10.1103/physrevb.78.115305

Google Scholar

[8] J. J. Yang, B. Liu, Y. Wang, K. W. Xu, Homologous temperature dependence of global surface scaling behaviors of polycrystalline copper films, Appl. Phys. Lett. 95(2009) 194104.

DOI: 10.1063/1.3263151

Google Scholar

[9] S.-H. Woo, C. K. Hwangbo, Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition, J. Korean Phys. Soc. 49(2006) 2136-2142.

Google Scholar

[10] M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, S.-Y. Lin, Realization of a near-perfect antireflection coating for silicon solar energy utilization, Opt. Lett. 33(2008) 2527-2529.

DOI: 10.1364/ol.33.002527

Google Scholar

[11] H. Chu, Y. Huang, Y. Zhao, Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection, Appl. Spect. 62(2008) 922-931.

DOI: 10.1366/000370208785284330

Google Scholar

[12] A. Bonakdarpour, M. D. Fleischauer, M. J. Brett, J. R. Dahn, Columnar support structures for oxygen reduction electrocatalysts prepared by glancing angle deposition, Appl. Catal. A 349(2008) 110-115.

DOI: 10.1016/j.apcata.2008.07.015

Google Scholar

[13] B. A. Movchan, A. V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide, Phys. Met. Metallogr. 28(1969) 83-90.

Google Scholar

[14] J. A. Thornton, High rate thick film growth, Ann. Rev. Mater. Sci. 7(1977) 239-260.

Google Scholar

[15] L.J.He, C. Li, X.Z. Liu, The optical properties of alumina films prepared by electron beam evaporation at oblique incidence, Mater. Lett. 101(2013) 1-4.

DOI: 10.1016/j.matlet.2013.03.049

Google Scholar

[16] D.L. Smith:'Thin-film deposition: principles and practice', McGraw-Hill, New York, 1995.

Google Scholar

[17] P. Meakin: 'Fractals, scaling and growth far from equilibrium', Cambridge University Press, Cambridge, 1998.

Google Scholar

[18] A. H. M. Smets, W. M. M. Kessels, M. C. M. van de Sanden, Vacancies and voids in hydrogenated amorphous silicon, Appl. Phys. Lett. 82(2003) 865-867.

DOI: 10.1063/1.1559657

Google Scholar

[19] N. M. Hasan, J. J. Mallett, S. G. dos Santos Filho, A. A. Pasa, W. Schwarzacher, Dynamic scaling of the surface roughness of Cu deposited using a chemical bath, Phys. Rev. B 67(2003) 081401.

DOI: 10.1103/physrevb.67.081401

Google Scholar

[20] M. A. Auger, L. Vázquez, R. Cuerno, M. Castro, M. Jergel, O. Sánchez, Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering, Phys. Rev. B 73(2006) 045436.

DOI: 10.1103/physrevb.73.045436

Google Scholar