Size Effect on the Transformation from Graphite to Nanodiamonds

Article Preview

Abstract:

The synthesis of nanodiamonds by pulsed-laser ablation in liquid (PLAL) is an attractive research field in developing well-dispersed fluorescent nanodiamonds for bioimaging and life science. However, nanodiamonds are quite different from their widely pursued carbon allotropes both in synthesis conditions and physical properties. It is a great challenge to synthesize metastable phase nanodiamonds that prefer high temperature and high pressure. Despite the progress in the synthesis of nanodiamond by pulsed-laser ablation of graphite target using different laser power densities under room conditions, the transformation from graphite to nanodiamonds are not yet well explained. In order to have a better understanding to the formation of metastable nanodiamonds upon PLAL, the formation of nanodiamond has been elucidated from both the aspects of thermodynamics and kinetics. Due to low laser intensity and long wavelength, synthesis of nanodiamonds is the result of high cooling velocity of high-pressure and high-temperature carbon vapor condensation formed under laser vaporization of graphite particles. When diamond nuclei grow into the right size, they cannot increase and the graphite nucleation begins to form and grow on the diamond at given conditions due to long pulse width for ms-pulsed laser. In fact, the diamond particles enwrapped several layers of graphite have obtained. Moreover, the reasons related 3~6nm diamonds prepared by this new process and having narrow size distribution are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

412-418

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.Y. Xu, Z.M. Yu, Y.W. Zhu, Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond, J. Solid State Chem. 178(2005)688-693.

DOI: 10.1016/j.jssc.2004.12.025

Google Scholar

[2] G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals, Progress in Materials Science, Prog. Mater. Sci. 52 (2007)648-698.

DOI: 10.1016/j.pmatsci.2006.10.016

Google Scholar

[3] C. X. Wang, Y. H. Yang, N. S. Xu, G. W. Yang, Thermodynamics of diamond nucleation on the nanoscale, J. Am. Chem. Soc.126(2004)11303-11306.

DOI: 10.1021/ja049333c

Google Scholar

[4] P. Badziag, W. S. Verwoerd, W. P. Ellis, N. R. Greiner, Nanometre-sized diamonds are more stable than graphite, Nature. 343(1990)244-255.

DOI: 10.1038/343244a0

Google Scholar

[5] S.R.J Pearce, S.J. Henley, F. Claeyssens, P.W. May, K.R. Hallam, Production of nanocrystalline diamond by laser ablation at the solid/liquid interface, Diam. Relat Mater. 13(2004)661-665.

DOI: 10.1016/j.diamond.2003.08.027

Google Scholar

[6] S.L. Hu, J. Sun, X.W. Du, F. Tian, L. Jiang, The formation of multiply twinning structure and photoluminescence of well-dispersed nanodiamonds produced by pulsed-laser irradiation, Diam. Relat Mater. 17(2008)142-146.

DOI: 10.1016/j.diamond.2007.11.009

Google Scholar

[7] C.X. Wang, Y.H. Yang, Q.X. Liu, G.W. Yang, Phase stability of diamond nanocrystals upon pulsed-laser induced liquid-solid interfacial reaction: experiments and ab initio calculations, Appl. Phys. Lett. 84(2004)1471-1473.

DOI: 10.1063/1.1650917

Google Scholar

[8] S.L. Hu, F. Tian, P.K. Bai, S.R. Cao, J. Sun, J. Yang, Synthesis and luminescence of nanodiamonds from carbon black, Mater. Sci. Eng B. 157(2009)11-14.

DOI: 10.1016/j.mseb.2008.12.001

Google Scholar

[9] F.Tian, J. Sun, S.L. Hu, X.W. Du, Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation, J. Appl. Phys. 104(2008)096102.

DOI: 10.1063/1.2978213

Google Scholar

[10] A.V. Gusarov, A.G. Gnedovets, I. Smurov, G. Flamant, Submicron particles synthesis by laser evaporation at low power density: a numerical analysis, Appl. Surf. Sci.154-155(2000)508-513.

DOI: 10.1016/s0169-4332(99)00458-4

Google Scholar

[11] J. Sun, S. L. Hu, X. W. Du, Y. W. Lei, L. Jiang, Ultra-fine diamond synthesized by long-pulse-width laser, Appl. Phys. Lett. 89(2006)183115.

DOI: 10.1063/1.2385210

Google Scholar

[12] C.X. Wang, J. Chen, G.W. Yang, N. S. Xu, Thermodynamic Stability and Ultrasmall-Size Effect of Nanodiamonds, Angew. Chem. Int. Ed. 44(2005)7414-7418.

DOI: 10.1002/anie.200501495

Google Scholar

[13] J.A. Aguilera, C. Aragon, Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.: Comparison of local and spatially integrated measurements, Spectrochinica Acta Part B. 59 (2004)1861-1876.

DOI: 10.1016/j.sab.2004.08.003

Google Scholar

[14] A.Bogaerts, Z.Y. Chen, R. Gijbels, A. Vertes, Laser ablation for analytical sampling: what can we learn from modeling? Spectrochinica Acta Part B.58(2003)1867-1893.

DOI: 10.1016/j.sab.2003.08.004

Google Scholar

[15] A.I. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003), Carbon. 43(2005)1115-1142.

DOI: 10.1016/j.carbon.2004.12.027

Google Scholar

[16] C.X. Wang, Y.H. Yang, G.W. Yang, Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid, J. Appl Phys. 97(2005)066104.

DOI: 10.1063/1.1863415

Google Scholar

[17] E.G. Gamaly, A.V. Rode, B. Luther-Davies, Laser ablation of carbon at the threshold of plasma formation, Appl. Phys. A. 69(1999)S121-S127.

DOI: 10.1007/s003399900387

Google Scholar

[18] C.X. Wang, G.W. Yang, Thermodynamics of metastable phase nucleation at the nanoscale, Mat. Sci. Eng. R. 49(2005)157-202.

Google Scholar

[19] H.A.J. Oonk, M.T. Calvet, Equilibrium between phases of matter: phenomenology and thermodynamics, Springer, 2008.

Google Scholar

[20] C.X. Wang, P. Liu, H. Cui, G.W. Yang, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid, Appl. Phys. Lett. 87(2005)201913.

DOI: 10.1063/1.2132069

Google Scholar

[21] J.Y. Raty, G. Galli, Ultradispersity of diamond at the nanoscale, Nature Materials. 2(2003)792-795.

DOI: 10.1038/nmat1018

Google Scholar

[22] J. Sun, S.L. Hu, X. W. Du, Y.W. Lei, L. Jiang, Ultra-fine Nanodiamonds Synthesized Using Millisecond-pulsed Laser, Acta Phys. Chim. Sin. 23 (2007)1105-1108.

Google Scholar

[23] Q. Jiang, Z.P. Chen, Thermodynamic phase stabilities of nanocarbon, Carbon. 44(2006)79-83.

DOI: 10.1016/j.carbon.2005.07.014

Google Scholar