Levitation Performance of Multiple YBaCuO Blocks with Different Arrays above a Permanent Magnet Guideway

Article Preview

Abstract:

Bulk high temperature superconductors are usually used as arrays due to the limited size and performance of a single bulk. To find a reasonable array pattern for the superconducting maglev vehicle, we studied the levitation force of four multi-seeded rectangular YBaCuO blocks with three possible arrays above a permanent magnet guideway (PMG). Experimental results show that the levitation force can be improved through an optimal array pattern of the bulk superconductor. The method is to avoid the joint gaps of bulk arrays in a strong magnetic field area of the PMG thus improving the utilization rate of the applied magnetic field. The optimal array pattern will be helpful to improve the levitation performance and reduce the quantity of onboard superconductors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

431-435

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.N. Werfel, U. Floegel-Delor, R. Rothfeld, et al., Superconductor bearings, flywheels and transportation, Supercond. Sci. Technol. 25(2012) 014007.

DOI: 10.1088/0953-2048/25/1/014007

Google Scholar

[2] M. Subkhan, M. Komori, New concept for flywheel energy storage system using SMB and PMB, IEEE Trans. Appl. Supercond. 21(2011) 1485-1488.

DOI: 10.1109/tasc.2010.2098470

Google Scholar

[3] G.G. Sotelo, A.C. Ferreira, R. Andrade, Halbach array superconducting magnetic bearing for a flywheel energy storage system, IEEE Trans. Appl. Supercond. 15(2005) 2253-2256.

DOI: 10.1109/tasc.2005.849624

Google Scholar

[4] Y.H. Han, B.J. Park, S.Y. Jung, S.C. Han, Study of superconductor bearings for a 35 kWh superconductor flywheel energy storage system, Physica C 483(2012) 156-161.

DOI: 10.1016/j.physc.2012.08.002

Google Scholar

[5] J.S. Wang, S.Y. Wang, Y.W. Zeng, et al., The first man-loading high temperature superconducting Maglev test vehicle in the world, Physica C 378-381(2002) 809-814.

DOI: 10.1016/s0921-4534(02)01548-4

Google Scholar

[6] L. Schultz, O. Haas, P. Verges, et al., Superconductively levitated transport system—the supratrans project, IEEE Trans. Appl. Supercond. 15(2005) 2301-2305.

DOI: 10.1109/tasc.2005.849636

Google Scholar

[7] L. Kuhn, M. Mueller, R. Schubert, C. Beyer, O. Haas, L. Schultz, Static and dynamic behavior of a superconducting magnetic bearing using YBCO bulk material, IEEE Trans. Appl. Supercond. 17(2007) 2079-2082.

DOI: 10.1109/tasc.2007.897196

Google Scholar

[8] G.G. Sotelo, D.H.N. Dias, O.J. Machado, et al., Experiments in a real scale maglev vehicle prototype, J. Phys.: Conf. Ser. 234(2010) 032054.

DOI: 10.1088/1742-6596/234/3/032054

Google Scholar

[9] Z. Deng, J. Wang, J. Zheng, et al., Performance advances of HTS maglev vehicle system in three essential aspects, IEEE Trans. Appl. Supercond. 19(2009) 2137-2141.

DOI: 10.1109/tasc.2009.2018108

Google Scholar

[10] F.N. Werfel, U. Floegel-Delor, R. Thomas, et al., Large-scale HTS bulks for magnetic application, Physica C 484(2013) 6-11.

DOI: 10.1016/j.physc.2012.03.007

Google Scholar

[11] S. Wang, J. Wang, C. Deng, et al., An update high-temperature superconducting maglev measurement system, IEEE Trans. Appl. Supercond. 17(2007) 2067-2070.

DOI: 10.1109/tasc.2007.899257

Google Scholar