Stable Levitation Performance of Bulk High Temperature Superconductor Magnet in Applied Magnetic Fields

Article Preview

Abstract:

Bulk high temperature superconductor magnet (HTSCM) has been considered to get the better stable levitation in applied magnetic field which is not the original field-cooling magnetization (FCM) field in this paper. The vibration disturbance experiments firstly showed that a permanent magnet (PM) can suspend stably under a bulk Yttrium Barium Copper Oxide (YBCO) HTSCM. This implies that the stable levitation of one single bulk HTSCM is able to realize in the other magnetic field even from one single small PM due to the re-magnetization effect. Secondly, it is found that the HTSCM with more trapped flux produced larger guidance forces and smaller repulsion levitation forces compared with the well-recognized FCM condition of the30mm field-cooling height by the permanent magnet guideway (PMG). Especially, the HTSCM with the 0.349T trapped field achieved a maximum 9.8N guidance force, which is over impressive 7 times than the conventional FCM condition. So, it is feasible to introduce the bulk HTSCM into the HTS Maglev transportation system because this pre-magnetization method of the onboard superconductor bulks is not only helpful to improve the levitation capability and stability, but also enhance the dynamic property above the practical PMG.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

436-441

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.S. Wang, S.Y. Wang, Y.W. Zeng, et al., Physica C 378-381(2002) 809-814.

Google Scholar

[2] L. Schultz, O. De Haas, P. Verges, et al., Superconductively levitated transport system - the SupraTrans project, IEEE Trans. Appl. Supercond. 15(2005) 2301-2305.

DOI: 10.1109/tasc.2005.849636

Google Scholar

[3] R.M. Stephan, A.C. Ferreira, R. de Andrade, et al.,, IEEE International Symposium on Industrial Electronics 1(2003), 206-209.

Google Scholar

[4] M. Okano, T. Iwamoto, S. Fuchino, N. Tamada, Physica C 386(2003) 500.

Google Scholar

[5] M. Murakami, Melt Processed High-Temperature Superconductor, World Scientific Publisher, Singapore, 1992.

Google Scholar

[6] G. Krabbes, G. Fuchs, W. Canders, H May, R Palka, High temperature Superconductor Bulk Materials, Wiley-VCH, Weinheim, 2006.

DOI: 10.1002/3527608044

Google Scholar

[7] M. Tomita, M. Murakami, High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K, Nature 421(2003) 517-520.

DOI: 10.1038/nature01350

Google Scholar

[8] H.H. Song, J. Zheng, M.X. Liu, et al., IEEE Trans. Appl. Supercond. 16(2006) 1023-1026.

Google Scholar

[9] N.D. Valle, A. Sanchez, E. Pardo, D-X Chen, C. Navau, Appl. Phys. Lett. 90(2007) 042503.

Google Scholar

[10] K.B. Ma, Y.V. Postrekhin, W.K. Chu, Superconductor and magnet levitation devices, Rev.Sci. Instrum. 74(2003) 4989-5017.

DOI: 10.1063/1.1622973

Google Scholar

[11] H. Kamijo, H. Fujimoto, IEEE Trans. Appl. Supercond. 11(2001) 1816-1819.

Google Scholar

[12] J. Yu, E. Postrekhin, K.B. Ma, W-K Chu, T. Wilson, IEEE Trans. Appl. Supercond. 9(1999) 908-910.

Google Scholar

[13] Z.G. Deng, J. Zheng, H.H. Song, S. Wang, J. Wang, Mater. Sci. Forum 546(2007) 1941-1944.

Google Scholar

[14] S.Y. Wang, J.S. Wang, C.Y. Deng, et al., IEEE Trans. Appl. Supercond. 17(2007) 2067-2070.

Google Scholar