[1]
T. Caykara, S. Demirci, M.S. Eroglu, O. Guven, Poly(ethylene oxide) and its blends with sodium alginate, Polymer. 46 (2005) 10750-10757.
DOI: 10.1016/j.polymer.2005.09.041
Google Scholar
[2]
K.E. Park, S.Y. Jung, S.J. Lee, B.M. Min, W.H. Park, Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers, Int. J. Biol. Macromol. 38 (2006) 165-173.
DOI: 10.1016/j.ijbiomac.2006.03.003
Google Scholar
[3]
N. Niamsa, Y. Srisuwan, Y. Baimark, P. Phinyocheep, S. Kittipoom, Preparation of nanocomposite chitosan/silk fibroin blend films containing nanopore structures, Carbohyd. Polym. 78 (2009) 60-65.
DOI: 10.1016/j.carbpol.2009.04.003
Google Scholar
[4]
H.L. Zhu, X.X. Feng, H.P. Zhang, Y.H. Guo, J.Z. Zhang, J.Y. Chen, Structural characteristic and properties of silk fibroin/poly(lactic acid) blend films, J. Biomat. Sci. Polym. E. 20 (2009) 1259-1274.
DOI: 10.1163/156856209x452980
Google Scholar
[5]
L. Zhu, W.L. Xu, M.B. Ma, H. Zhou, Effect of plasma treatment of silk fibroin powder on the properties of silk fibroin powder polyurethane blend film, Polym. Eng. Sci. 50 (2010) 1705-1712.
DOI: 10.1002/pen.21697
Google Scholar
[6]
B.B. Mandal, S. Kapoor, S.C. Kundu, Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release, Biomaterials. 30 (2009) 2826-2836.
DOI: 10.1016/j.biomaterials.2009.01.040
Google Scholar
[7]
L. Wang, R.M. Shelton, P.R. Cooper, M. Lawson, J.T. Triffitt, J.E. Barralet, Evaluation of sodium alginate for bone marrow cell tissue engineering, Biomaterials. 24 (2003) 3475-3481.
DOI: 10.1016/s0142-9612(03)00167-4
Google Scholar
[8]
Y. Cao, X.C. Shen, Y. Chen, J. Guo, Q. Chen, X.Q. Jiang, pH induced self assembly and capsules of sodium alginate, Biomacromolecules. 6 (2005) 2189-2196.
DOI: 10.1021/bm0501510
Google Scholar
[9]
J.W. Lu, Y.L. Zhu, Z.X. Guo, P. Hu, J. Yu, Electrospinning of sodium alginate with poly(ethylene oxide), Polymer. 47 (2006) 8026-8031.
DOI: 10.1016/j.polymer.2006.09.027
Google Scholar
[10]
J. Zhang, Q. Wang, A. Wang, In situ generation of sodium alginate hydroxyapatite nanocomposite beads as drug controlled release matrices, Acta Biomater. 6 (2010) 445-454.
DOI: 10.1016/j.actbio.2009.07.001
Google Scholar
[11]
V.R. Babu, M. Sairam, K.M. Hosamani, T.M. Aminabhavi, Preparation of sodium alginate methylcellulose blend microspheres for controlled release of nifedipine, Carbohyd. Polym. 69 (2007) 241-250.
DOI: 10.1016/j.carbpol.2006.09.027
Google Scholar
[12]
S.J. Bidarra, C.C. Barrias, K.B. Fonseca, M.A. Barbosa, R.A. Soares, P.L. Granja, Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery, Biomaterials. 32 (2011) 7897-7904.
DOI: 10.1016/j.biomaterials.2011.07.013
Google Scholar
[13]
J.F. Ming, B.Q. Zuo, A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers, Mater. Chem. Phys. 137 (2012) 421-427.
DOI: 10.1016/j.matchemphys.2012.10.001
Google Scholar
[14]
Y.Z. Li, X. Zhao, Q. Xu, Q.H. Zhang, D.J. Chen, Facile preparation and enhanced capacitance of the polyaniline sodium alginate nanofiber network for supercapacitors, Langmuir. 27 (2011) 6458-6463.
DOI: 10.1021/la2003063
Google Scholar
[15]
Q. Lu, X. Hu, X.Q. Wang, J.A. Kluge, S.Z. Lu, P. Cebe, D.L. Kaplan, water-insoluble silk films with silk I structure, Acta Biomater. 6 (2010) 1380-1387.
DOI: 10.1016/j.actbio.2009.10.041
Google Scholar
[16]
I. Donati, S. Holtan, Y.A. Morch, M. Borgogna, M. Dentini, G. Skjak-Braek, New hypothesis on the role of alternating sequences in calcium alginate gels, Biomacromolecules. 6 (2005) 1031-1040.
DOI: 10.1021/bm049306e
Google Scholar
[17]
Y.C. Li, Y.R. Cai, X.D. Kong, J.M. Yao, Anisotropic growth of hydroxyapatite on the silk fibroin films, Appl. Surf. Sci. 255 (2008) 1681-1685.
DOI: 10.1016/j.apsusc.2008.06.009
Google Scholar