Stability of NbCl5 and ZnMg Intercalated Graphite

Article Preview

Abstract:

NbCl5 and ZnMg intercalated graphite have been successfully synthesized by two-zone vapor transport method with the reactants sealed in the vacuum. The incorporation of NbCl5 and ZnMg results in randomly intercalation confirmed from the X-ray diffraction (XRD) analysis, and the doping effect change with the variation of intercalation time, the evolution of the doping is confirmed by X-ray photoelectron spectroscopy (XPS) and Raman analysis. The doped graphite is relatively stable at room temperature for up to 60 days from the Raman observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

419-424

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. S. Dresselhaus, G. Dresselhaus,Intercalation compounds of graphite. Adv. Phys. 51(2002) 1-186.

Google Scholar

[2] T. Enoki, M. Suzuki, M. Endo, New York: Oxford. 2003. Reference to a chapter in an edited book: Graphite intercalation compounds and applications.

Google Scholar

[3] H. S. Cheng, X. W. Sha, L. Chen, A. C. Cooper, M. L. Foo, G. C. Lau, W. H. Bailey, G.P. Pez, An Enhanced Hydrogen Adsorption Enthalpy for Fluoride Intercalated Graphite Compounds. J. Am. Chem. Soc. 31(2009) 17732-17733.

DOI: 10.1021/ja907232y

Google Scholar

[4] J. C. Tsang, M. Freitag, V. Perebeinos, J. Liu, P. H. Avouris, Doping and phonon renormalization in carbon nanotubes. Nature Nanotech. 2 (2007) 725-730.

DOI: 10.1038/nnano.2007.321

Google Scholar

[5] A. Grüneis, C. Attaccalite, A. Rubio, D. V. Vyalikh, S. L. Molodtsov, J. Fink, R. Follath, W. Eberhardt, B.Büchner, T. Pichler, Angle-resolved photoemission study of the graphite intercalation compound KC8: A key to graphene. Phys. Rev. B 80 (2009) 075431-075435.

DOI: 10.1103/physrevb.80.075431

Google Scholar

[6] S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, F. Mauri. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6 (2007) 198-201.

DOI: 10.1038/nmat1846

Google Scholar

[7] T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, N. T. Skipper, Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Phys. 1(2005) 39-41.

DOI: 10.1038/nphys0010

Google Scholar

[8] J. Hwang, J. P. Carbotte, S. Tongay, A. F. Hebard, D. B. Tanner, Ultrapure multilayer graphene in bromine-intercalated graphite. Physical Rev. B 84(2011) 041410-041413.

DOI: 10.1103/physrevb.84.041410

Google Scholar

[9] S. Tongay, J. Hwang, D. B. Tanner, H. K. Pal, D. Maslov, A. F. Hebard, Supermetallic conductivity in bromine-intercalated graphite. Physical Rev. B 81(2010) 115428-115433.

DOI: 10.1103/physrevb.81.115428

Google Scholar

[10] S.Tongay, T. Schumann, X. Miao, B. R. Appleton, A. F. Hebard, Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon 49 (2011) 2033-2038.

DOI: 10.1016/j.carbon.2011.01.029

Google Scholar

[11] A. C. Crowther, A. Ghassaei, N. Jung, L. E. Brus, Strong charge-transfer doping of 1 to 10 layer graphene by NO₂. ACS Nano 6(2012) 1865-1875.

DOI: 10.1021/nn300252a

Google Scholar

[12] W. J. Zhao, P. H. Tan, J. Liu, A. C. Ferrari, Intercalation of Few-Layer Graphite Flakes with FeCl3: Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability. J. Am. Chem. Soc. 113(2011) 5941-5946.

DOI: 10.1021/ja110939a

Google Scholar

[13] Y. Zhang, Z. X. Zhang, T. B. Li, X. G. Liu, B. S. Xu, XPS and XRD study of FeCl3–graphite intercalation compounds prepared by arc discharge in aqueous solution. Spectrochimica Acta Part A 70 (2008) 1060–1064.

DOI: 10.1016/j.saa.2007.10.031

Google Scholar

[14] X. Q. Meng, S. Tongay, J. Kang, Z. H. Chen, F. M. Wu, S. S. Li, J. B. Xia, J.B. Li, J. Q. Wu, Stable p- and n-type doping of few-layer graphene/graphite, Carbon 57(2013)507-514.

DOI: 10.1016/j.carbon.2013.02.028

Google Scholar

[15] Z. R. Ismagilov, A. E. Shalagina, O. Yu. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Y. A. Chesalov, D. I. Kochubey, A. I. Romanenko, O. B. Anikeev, T. I. Buryakov, E. N. Tkachev, Structure and electrical conductivity of nitrogen-doped carbon nanofibers, Carbon 47(2009) 1922-1929.

DOI: 10.1016/j.carbon.2009.02.034

Google Scholar

[16] A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A. K. Sood, A. C. Ferrari, Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79 (2009) 155417-155423.

DOI: 10.1103/physrevb.79.155417

Google Scholar

[17] A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amporphous carbon. Phys. Rev. B 61(2000)14095-14107.

DOI: 10.1103/physrevb.61.14095

Google Scholar

[18] S. Piscanec, S. Piscanec, M. Lazzeri, F. Mauri , A. C. Ferrari, J. Robertson, Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93(2004) 185503-185506.

DOI: 10.1103/physrevlett.93.185503

Google Scholar

[19] D. C. Elias, R. R. Nair, T. M. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov. Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323(2009) 610-613.

DOI: 10.1126/science.1167130

Google Scholar

[20] S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D. B. Tanner, A. F. Hebard, B. R. Appleton. Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22(2011)425701-425706.

DOI: 10.1088/0957-4484/22/42/425701

Google Scholar

[21] C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85(2000)5214-5217.

DOI: 10.1103/physrevlett.85.5214

Google Scholar