Improvements of Superconducting Properties on Bi-2212 Bulks by Element Doping

Article Preview

Abstract:

Bi-2212 bulks have been fabricated by spark plasma sintering technique with the Bi-2212 precursor powders synthesized by co-precipitation process. The Al2O3 dopants were added into the precursor powders during the sintering process. The lattice parameters of Bi-2212 increased with Al content, suggesting that Al3+ ions entering into the lattice as interstitial ions due to the small ion radii. The carrier concentration has been calculated with measured room temperature thermopower values. The change of carrier concentration can be attributed to the changes of both Al and oxygen contents in the lattice. Therefore, by Al doping the samples have been tuned into optimal doping region with maximum critical temperature of 86K. The appearance of Al interstitial ions in the lattice caused certain amount of point defects, which acted as pinning centers. Therefore the flux pinning properties have been enhanced in the bulks, and obvious improvements of critical current density for over 55% have been obtained at 4.2K self-field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

448-453

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Byeon, C. English, A. McInturff, P. McIntyre, A. Sattarov, Bi-2212 Structured Cable for High-Field Solenoid Inserts, IEEE Trans. Appl. Supercond. 18(2008) 513-515.

DOI: 10.1109/tasc.2008.921347

Google Scholar

[2] M. Hamabe, M. Sugino, H. Watanabe, T. Kwahara, S. Yamaguchi, Y. Ishiguro, K. Kawamura, Critical current and its magnetic field effect measurement of HTS tapes forming DC superconducting cable, IEEE Trans. Appl. Supercond. 21(2011) 1038-1041.

DOI: 10.1109/tasc.2010.2089964

Google Scholar

[3] S. Mukoyama, M. Yagi, T. Yonemura, T. Nomura, N. Fujiwara, Y. Ichikawa, Y. Aoki, T. Saitoh, N. Amemiya, A. Ishiyama, N. Hayakawa, Model cable tests for a 275 kV 3 kA HTS Power Cable, IEEE Trans. Appl. Supercond. 21(2011) 976-979.

DOI: 10.1109/tasc.2011.2117411

Google Scholar

[4] J. F. Maguire, J. Yuan, W. Romanosky, F. Schmidt, R. Soika, S. Bratt, F. Durand, C. King, J. McNamara, T. E. Welsh, Progess and status of a 2G HTS power cable to be installed in the long island power authority grid, IEEE Trans. Appl. Supercond. 21(2011) 961-966.

DOI: 10.1109/tasc.2010.2093108

Google Scholar

[5] H. Miao, K. R. Marken, M. Meinesz, B. Czabaj, S. Hong, A. Twin, P. Noonan, U. P. Trociewitz, J. Schwartz, High Field Insert Coilds From Bi-2212/Ag Round Wires, IEEE Trans. Appl. Supercond. 17(2007) 2262-2265.

DOI: 10.1109/tasc.2007.898999

Google Scholar

[6] A. Godeke, D. Cheng, D. R. Dietderich, C. D. English, H. Felice, C. R. Hannaford, S. O. Prestemon, G. Sabbi, R. M. Scanlan, Y. Hikichi, J. Nishioka, T. Hasegawa, Development of Wind and React Bi-2212 Accelerator Magnet Technology, IEEE Trans. Appl. Supercond. 18(2008) 516-519.

DOI: 10.1109/tasc.2008.922536

Google Scholar

[7] T. Kiyoshi, A. Sato, H. Wada, S. Hatashi, M. Shimada, Y. Kawate, Gneration of 23.4 T Using Two Bi-2212 Insert Coils, IEEE Trans. Appl. Supercond. 9(1999) 472-477.

DOI: 10.1109/77.828274

Google Scholar

[8] J. K. Freericks, Guilty as Charged, Nat. Phys., 6(2010) 559-560.

Google Scholar

[9] P. d. Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, M. Pernet, Texturing of Magnetic Materials at High Temperature by Solidification in a Magnetic Field, Nature. 349(1991) 770-772.

DOI: 10.1038/349770a0

Google Scholar

[10] H. B. Yang, J. D. Rameau, P. D. Johnson, T. Valla, A. Tsvelik, G. D. Gu, Emergence of Preformed Cooper Pairs from the Doped Mott Insulating State in Bi-2212, Nature. 456(2008) 77-80.

DOI: 10.1038/nature07400

Google Scholar

[11] C. Terzioglu, Investigation of some Physical Properties of Gd Added Bi-2223 Superconductors, J. Alloy. Compd. 509(2011) 87-93.

DOI: 10.1016/j.jallcom.2010.08.105

Google Scholar

[12] X. T. Liu, T. M. Shen, U. P. Trociewitz, J. Schwartz, React-Wind-Sinter Process of High Superconductor Fraction Bi-2212/AgMg Round Wire, IEEE Trans. Appl. Supercond, 18(2008) 1179-1183.

DOI: 10.1109/tasc.2008.922258

Google Scholar

[13] J. Jian, W. L. Starch, M. Hannion, F. Kametani, U.P. Trociewitz, E. E. Hellstrom, D. C. Larbalestier, Doubled critical current density in Bi-2212 round wires by reduction of the residual bubble density, Supercond. Sci. Technol., 24(2011) 082001.

DOI: 10.1088/0953-2048/24/8/082001

Google Scholar

[14] W. T. Nachtrab, X. T. Liu, T. Wong, J. Schwartz, Effect of Solidification Conditions on Partial Melt Processed Bi-2212/Ag Round wires, IEEE Trans. Appl. Supercond. 21(2011) 2795-2799.

DOI: 10.1109/tasc.2010.2099194

Google Scholar

[15] H. M. Weijers, U. P. Trociewitz, W. D. Markiewicz, J. Jiang, D. Myers, E. E. Hellstrom, A. Xu, J. Jaroszynski, P. Noyes, Y. Viouchkov, D. C. Larbalestier, High Field Mgnets With HTS conductors, IEEE Trans. Appl. Supercond. 20(2010) 576-582.

DOI: 10.1109/tasc.2010.2043080

Google Scholar

[16] S. Vinu, P. M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, The Effect of Substitution of Eu on the Critical Current Density and Flux Pinning Properties of (Bi, Pb)-2212 Superconductor, Supercon. Sci. Technol., 21(2008) 045001.

DOI: 10.1088/0953-2048/21/4/045001

Google Scholar

[17] S. Vinu, P. M. Sarun, R. Shabna, P. M. Aswathy, J. B. Anooja, U. Syamaprasad, Suppression of Flux-Creep in (Bi, Pb)-2212 Superconductor by Holmium Doping, Physica B. 405(2010) 4355-4359.

DOI: 10.1016/j.physb.2010.07.042

Google Scholar

[18] S. Bal, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, Y. Zalaoglu, Role of Cerium Addition on Structural and Superconducting Properties of Bi-2212 System, J. Supercond. Nov. Magn. 25(2011) 847-856.

DOI: 10.1007/s10948-011-1360-9

Google Scholar

[19] P. M. Sarun, S. Vinu, R. Shabna, U. Syamaprasad, Suppression of Dissipative Flux-motion in a high-Tc (Bi,Pb)-2212 Superconductor by Dy doping, J. Alloy. Compd. 497(2010) 6-9.

DOI: 10.1016/j.jallcom.2010.02.168

Google Scholar

[20] M. L. Li, Y. Zhang, Y. Li, Y. Qi, Granular Superconductivity in Polycrastalline Bi-2212 by homovalent La substitution on Bi sites, J. Non-Cryst. Solids. 356(2010) 2831-2835.

DOI: 10.1016/j.jnoncrysol.2010.09.036

Google Scholar

[21] P. M. Sarun, S. Vinu, R. Shabna, J. B. Anooja, P. M. Aswathy, U. Syamaprasad, Structural and Transport Properties of the Lu doped (Bi,Pb)-2212 Superconductor, IEEE Trans. Appl. Supercond. 20(2010) 61-65.

DOI: 10.1109/tasc.2009.2039793

Google Scholar

[22] M. A. Aksan, M. E. Yakinci, K. Kadowaki, The Effect of Ru Substitution on the Thermal, Structural and Magnetic Properties of Bi-2223 Superconducting System, J. Supercond. Nov. Magn. 23(2010) 371-380.

DOI: 10.1007/s10948-009-0587-1

Google Scholar

[23] P. M. Sarun, R. Shabna, S. Vinu, A. Biju, U. Syamaprasad, Highly Enhanced Superconducting Properties of Bi-2212 by Y and Pb Co-doping, Physica B. 404(2009) 1602-1606.

DOI: 10.1016/j.physb.2009.01.023

Google Scholar

[24] C. B. Mao, Z. H. Du, L. Zhou, Modified coprecipitation process of synthesizing Bi-system superconductor precursor powder and its stoichiometry, Science in China. E2(1996) 181-183.

Google Scholar

[25] Y. Ando, Y. Hanaki, S. Ono, T. Murayama, K. Segawa, N. Miyamoto, S. Komiya, Carrier Concentrations in Bi2Sr2-zLazCuO6+d single crystals and their relation to the Hall Coefficient and Thermopower, Phys. Rev. B. 61(2000) R14956-R14959.

DOI: 10.1103/physrevb.61.r14956

Google Scholar