Fabrication of Highly Hydrophobic Polyurethane Foam for the Oil-Absorption Application

Article Preview

Abstract:

Hydrophobic polyurethane (PU) sponge for oil absorption application was fabricated by ZnO nanomaterial coating and stearic acid modification on ZnO surface. The contact angle and oil absorbent capacity ability of the obtained sponge were measured. It was demonstrated that both ZnO nanoparticle and ZnO nanorod coated PU sponge (ZnO NPs-PU and ZnO NRs-PU) showed good hydrophobicity and oil absorbent ability. ZnO NPs-PU and ZnO NRs-PU sponges have absorbent capacities of 18~92 times and 20~98 times of their own weight for different organic liquids, respectively. Moreover, the absorption capacity of the ZnO NRs-PU sponge did not deteriorate over 50 cycles. Therefore, the ZnO NRs-PU sponge has excellent recyclability for future application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

169-174

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Calcagnile, D. Fragouli, I.S. Bayer, G.C. Anyfantis, L. Martiradonna, P.D. Cozzoli, R. Cingolani and A. Athanassiou: ACS Nano 6. (2012), p.5413.

DOI: 10.1021/nn3012948

Google Scholar

[2] A. Zhang, M. Chen, C. Du, H. Guo, H. Bai and L. Li: ACS Appl. Mater. Interfaces 5. (2013), p.10201.

Google Scholar

[3] G. Hayase, K. Kanamori, M. Fukuchi, H. Kaji and K. Nakanishi: Angew. Chem. Int. Ed. 53. (2014), p. (1986).

Google Scholar

[4] Q. Zhu, Y. Chu, Z. Wang, N. Chen, L. Lin, F. Liu and Q. Pan: J. Mater. Chem. A 1. (2013), p.5386.

Google Scholar

[5] V. Broje and A.A. Keller: Environ. Sci. Technol. 40. (2006), p.7914.

Google Scholar

[6] E.B. Kujawinski, M.C. Kido Soule, D.L. Valentine, A.K. Boysen, K. Longnecker and M.C. Redmond: Environ. Sci. Technol. 45. (2011), p.1298.

DOI: 10.1021/es103838p

Google Scholar

[7] L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally and P. Yang: Angew. Chem. Int. Ed. 42. (2003), p.3031.

DOI: 10.1002/anie.200351461

Google Scholar

[8] F. L, Z. Z, M. Z, M. Y, L. B, J. L and Z. D.: Angew. Chem. Int. Ed. 43. (2004), p. (2012).

Google Scholar

[9] L. Zhang, Y. Zhong, D. Cha and P. Wang: Sci Rep 3. (2013), p.2326.

Google Scholar

[10] C. Ruan, K. Ai, X. Li and L. Lu: Angew. Chem. Int. Ed. 53. (2014), p.5556.

Google Scholar

[11] H. -W. Liang, Q. -F. Guan, L. -F. Chen, Z. Zhu, W. -J. Zhang and S. -H. Yu: Angew. Chem. Int. Ed. 51. (2012), p.5101.

Google Scholar

[12] C. Su: Appl. Surf. Sci. 256. (2009), p.1413.

Google Scholar

[13] Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li, W. Wang and J. Gao: ACS Appl. Mater. Interfaces 5. (2013), p.10018.

Google Scholar

[14] J. Li, Z. Jing, Y. Yang, F. Zha, L. Yan and Z. Lei: Appl. Surf. Sci. 289. (2004), p.1.

Google Scholar

[15] M. Lee, G. Kwak and K. Yong: ACS Appl. Mater. Interfaces 3. (2011), p.3350.

Google Scholar