Synthesis of Highly-Ordered V2O5 Nanowires by AAO Template and its Electrocatalytic Activity for Dopamine Electro-Oxidation

Article Preview

Abstract:

Highly-ordered V2O5 nanowires were prepared by sol-gel strategy using anodic aluminum oxide (AAO) as a template. The morphologies, structures and components of the nanowires were characterized by XRD, SEM and XPS. The results indicated high-ordered and uniformly distributed V2O5 nanowires were obtained, and the length and diameter were dependent on the diameter and the thickness of the applied AAO template. The V2O5 nanowires modified glassy carbon electrode (GCE) was used to investigate the electrochemical properties of dopamine (DA), V2O5 nanowires exhibited an excellent electrocatalytic behavior on DA.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

187-192

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Nature, 354 (1991) 56.

Google Scholar

[2] A.P. Alivisatas, Science, 271 (1996) 933.

Google Scholar

[3] X.F. Duan and C.M. Lieber, J. Am. Chem. Soc., 122 (2000) 188.

Google Scholar

[4] Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science, 291 (2001) (1947).

Google Scholar

[5] C.R. Martin, Science, 226 (1994) (1961).

Google Scholar

[6] A.M. Mrales and C.M. Lieber, Science, 279 (1998) 208.

Google Scholar

[7] D.W. Wang and H.J. Dai, Angew. Chem., Int. Ed., 41 (2002) 4783.

Google Scholar

[8] T.J. Trentler, K.M. Hichman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Science, 270 (1995) 1791.

Google Scholar

[9] J. Yu, J.C. Yu, W. Ho, L. Wu, and X. Wang, J. Am. Chem. Soc., 126 (2004) 3422.

Google Scholar

[10] Q.H. Wu, A. Thißen, W. Jaegermann, Surf. Sci., 578 (2005) 203.

Google Scholar

[11] Y.Q. Chu and Q.Z. Qin, Chem. Mater., 14 (2002) 3152.

Google Scholar

[12] C.J. Potrissi, C. Martin, J. Electrochem. Soc., 146 (1999) 3176.

Google Scholar

[13] K. Takahashi, S.J. Limmer, Y. Wang, and G. Cao, J. Phys. Chem. B, 108 (2004) 9795.

Google Scholar

[14] F. Roozenboom, P.D. Cordingley, J.P. Gellings, J. Catal., 68 (1981) 464.

Google Scholar

[15] I.E. Wachs, R.Y. Saleh, S.S. Chan, C.C. Cherich, Appl. Catal., 77 (1982) 309.

Google Scholar

[16] B.N. Reddy, B.M. Reddy, M. Subrahmanyam, J. Chem. Soc. Faraday Trans., 87 (1991) 1649.

Google Scholar

[17] J. Armor, Appl. Catal. B, 1 (1992) 221.

Google Scholar

[18] L.F. D'Elia, L. Rincon, R. Ortiz, Electrochim. Acta, 50 (2004) 217.

Google Scholar

[19] C. Aleksander and M. Graegorz, Anal. Chem., 71 (1999) 1055.

Google Scholar

[20] D.H. Qin, M. Lu, H.L. Li, Chem. Phys. Letter., 350 (2001) 51.

Google Scholar

[21] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, J. Electron. Spectro- sc. Relat. Phenom. 135 (2004) 137.

Google Scholar

[22] Wagner C. D., Naumkin A. V., Kraut-Vass A., Allison J. W., Powell C. J., Rumble J. R., Jr. NIST X-ray Photoelectron Spectroscopy Database, version 3. 3 (web version), 2003, http: /srdata. nist. gov/xps.

DOI: 10.6028/nist.tn.1289

Google Scholar

[23] L. Zhang, J. Jia, X. Zou, S. Dong, Electroanalysis, 16 (2004) 1413.

Google Scholar

[24] F. Malem, D. Mandler, Anal. Chem., 65 (1993) 37.

Google Scholar