Improved Low Temperature Solution Synthesis of Silicon Nanoparticles for Lithium-Ion Batteries

Article Preview

Abstract:

Silicon nanoparticles have extraordinary electrochemical performance for lithium-ion batteries. This paper gives an improved low temperature solution synthesis route of Si NPs. Reduced by magnesium and then passivated by four kinds of amines/amides respectively, stable yellow Si NPs ranging from 5-50 nm were prepared. When passivated by N-methyl-2-pyrrolidone, grape-like aggregation of 5-20 nm particles were generated. FTIR, XRD, SEM and Electrochemical Characterization were performed to confirm the product. The Si NPs passivated by NMP achieve good electrochemical performance with a first discharge capacity of 1154 mAhg-1 at a current density of 200 mAg-1 and good capacity retention of 95.3% after 5 cycles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

180-186

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.L. Wilson, P.F. Szajowski and L.E. Brus: Science, Vol. 262 (1993), p.1242.

Google Scholar

[2] H. Kim, M. Seo, M.H. Park and J. Cho: Angewandte Chemie International Edition, Vol. 49 (2010), p.2146.

Google Scholar

[3] M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho: Nano Letters, Vol. 9 (2009) No. 11, p.3844.

DOI: 10.1021/nl902058c

Google Scholar

[4] H. Ma, F. Cheng, J. Chen, J. Zhao, C. Li, Z. Tao and J. Liang: Advanced Materials, Vol. 19 (2007), p.4067.

Google Scholar

[5] H. Kim, B. Han, J. Choo and J. Cho: Angewandte Chemie, Vol. 120 (2008), p.10305.

Google Scholar

[6] L. Mangolini, E. Thimsen and U. Kortshagen: Nano Letters, Vol. 5 (2005) No. 4, p.655.

Google Scholar

[7] P.G. Kuzmin, G.A. Shafeev, V.V. Bukin, S.V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu and G. Viau: Journal of Physical Chemistry, Vol. 114 (2010) No. 36, p.15266.

DOI: 10.1021/jp102174y

Google Scholar

[8] K.A. Pettigrew, P.P. Power and S.M. Kauzlarich: MRS Proceedings (Boston, United States of America, December 2-5, 2002), Vol. 737, F1. 8.

Google Scholar

[9] J. Choi, N.S. Wang and V. Reipa: Langmuir, Vol. 25 (2009) No. 12, p.7097.

Google Scholar

[10] S. Hallmann, M.J. Fink and B.S. Mitchell: Journal of Materials Research, Vol. 26 (2011), p.1052.

Google Scholar

[11] R.K. Baldwin, K.A. Pettigrew, J.C. Garno, P.P. Power, G. Liu and S.M. Kauzlarich: Journal of the American Chemical Society, Vol. 124 (2002) No. 7, p.1150.

Google Scholar

[12] R.K. Baldwin, K.A. Pettigrew, E. Ratai, M.P. Augustine and S.M. Kauzlarich: Chemical Communications, (2002), p.1822.

Google Scholar

[13] Q. Li, Y. He, J. Chang, L. Wang, H. Chen, Y.W. Tan, H. Wang and Z. Shao: Journal of the American Chemical Society, Vol. 135 (2013) No. 40, p.14924.

Google Scholar

[14] T.M. Atkins, M.C. Cassidy, M. Lee, S. Ganguly, C.M. Marcus and S.M. Kauzlarich: ACS Nano, Vol. 7 (2013) No. 2, p.1609.

Google Scholar

[15] M. Dasog and J.G.C. Veinot: Physica Status Solidi A, Vol. 209 (2012), p.1844.

Google Scholar

[16] H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y.J. Mo and N. Pei: Solid State Ionics, Vol. 135 (2000), p.181.

Google Scholar

[17] P. Limthongkul, Y.I. Jang, N.J. Dudney and Y.M. Chiang: Acta Materialia, Vol. 51 (2003), p.1103.

Google Scholar

[18] J.P. Maranchi, A.F. Hepp and P.N. Kumta: Electrochemical and Solid-State Letters, Vol. 6 (2003) No. 9, p. A198.

Google Scholar