Preparation and Characterization of Mg-Doped GaN Nanowires by Au-Catalyzed Magnetron Sputtering Deposition

Article Preview

Abstract:

Mg-doped GaN nanowires have been successfully synthesized on Si (111) substrates by magnetron sputtering deposition through ammoniating Ga2O3/Au thin films at 900 °C for 15 min. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and photoluminescence (PL) spectrum were carried out to characterize microstructure, morphology, and optical property of GaN sample. The results demonstrate that the nanowires are single-crystal Mg-doped GaN with hexagonal wurtzite structure and high crystalline quality, which have the size of 40 nm in diameter and several tens of microns in length and good emission property. The growth procedure mainly follows the VLS mechanism, and Au plays an important role as catalyst, and more defect energy is formed due to metallic Au and thus promote the growth of GaN nanowires.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

193-200

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Fasol: Science, Vol. 272 (1996) No. 5269, p.1751.

Google Scholar

[2] S. Nakamura: Science, Vol. 281 (1998) No. 5379, p.956.

Google Scholar

[3] H. Morkoc and S.N. Mohammad: Science, Vol. 267 (1995) No. 5194, p.51.

Google Scholar

[4] W.Q. Han, S.S. Fan, Q.Q. Li, and Y.D. Hu: Science, Vol. 277 (1997) No. 5194, p.1287.

Google Scholar

[5] G.S. Cheng, S.H. Chen, X.G. Zhu, Y.Q. Mao, L.D. Zhang: Mater. Sci. Eng. A, Vol. 286 (2000) No. 1, p.165.

Google Scholar

[6] M.Q. He, I. Minus, P.Z. Zhou, S.N. Mohammed, J.B. Halpern, R. Jacobs, W.L. Sarney, L. Salamanca-Riba, and R. D. Vispute: Appl. Phys. Lett., Vol. 77 (2000) No. 23, p.3731.

DOI: 10.1063/1.1329863

Google Scholar

[7] P. Perlin,C. Jauberthie-Carillon, J.P. Itie, A.S. Miguel, I. Grzegory, and A. Polian: Phys. Rev. B, Vol. 45 (1992) No. 1, p.83.

DOI: 10.1103/physrevb.45.83

Google Scholar

[8] E. Cimpoiasu, E. Stern, R. Klie, R.A. Munden, G. Cheng and M.A. Reed Nanotechnology, Vol. 17 (2006) No. 23, p.5735.

DOI: 10.1088/0957-4484/17/23/004

Google Scholar

[9] F. Shi and C.S. Xue: J. Exp. Nanosci. Vol. 6 (2011) No. 2, p.174.

Google Scholar

[10] Y.L. Huang, C.S. Xue, H.Z. Zhuang, H.B. Sun, D.D. Zhang, Y. Wang, Z.P. Wang and Y. F. Guo: Superlatt. Microstruc., Vol. 45 (2009) No. 6, p.514.

Google Scholar

[11] J.H. Boo, C. Rohr and W. Ho: J. Crys. Growth., Vols. 189-190 (1998) No. 15, p.439.

Google Scholar

[12] B. Monemar. Phys. Rev. B, Vol. 10 (1974) No. 2, pp.676-681.

Google Scholar

[13] T. Sasaki, T. Matsuoka, J. App. Phys, Vol. 64 (1998) No. 9, p.4531.

Google Scholar

[14] N. Elkashef, R.S. Srinivasa, S. Major, S.C. Sabharwal, K.P. Muthe: Thin Solid Films Vol. 333 (1998) No. 1-2, p.9.

DOI: 10.1016/s0040-6090(98)00550-1

Google Scholar

[15] C.R. Kingsley, T.J. Whitaker, A.T.S. Wee, R.B. Jackman, J.S. Foord: Mater. Sci. Eng. B, Vol. 29 (1995) No. 1-3, p.78.

Google Scholar

[16] Q.Q. Wei, C.S. Xue, Z.C. Sun, W.T. Cao, H. H. Zhuang, Rare Metal. Mater. Eng., Vol. 34 (2005) No. 2, p.312.

Google Scholar

[17] N. Elkashef, R.S. Srinivasa, S. Major, S.C. Sabharwal and K.P. Muthe: Thin Solid Films Vol. 333 (1998) No. 1-2, p.9.

DOI: 10.1016/s0040-6090(98)00550-1

Google Scholar

[18] D. Li, M. Sumiys, S. Fuke: J. Appl. Phys., Vol. 90 (2001) No. 8, p.4219.

Google Scholar

[19] T. D. Veal, I. Mahboob, L.F.J. Piper, C.F. McConville and M. Hopkinson, Appl. Phys. Lett., Vol. 85 (2004) No. 9, p.1550.

Google Scholar

[20] K. Ueda, H. Yamamoto and M. Naito: Phys. Rev. Vol. 88 (2002) No. 2, p.171.

Google Scholar

[21] W.F. Choi, T.Y. Song, L.S. Tan: J. Appl. Phys, Vol. 83 (1998) No. 9, p.4968.

Google Scholar

[22] F.M. Amanullah, K.J. Pratap and V.H. Hari: Mater. Sci. Eng. B, Vol. 52 (1998) No. 2-3, No. 93.

Google Scholar

[23] T. J. Ghuang, C. R. Brundle, D. W. Rice: Surf. Sci. Vol. 59 (1979) No. 2, p.413.

Google Scholar

[24] B.S. Xu, D. Yang, F. Wang, J. Liang, S.F. Ma and X. G. Liu: Appl. Phys. Lett., Vol. 89 (2006) No. 7, p.074106.

Google Scholar

[25] S.M. Zhou, X.H. Zhang, X. Meng, K. Zou, X. Fan, S.K. Wu and S.T. Lee, Nanotechnology, Vol. 15 (2004) No. 9, p.1152.

Google Scholar

[26] S.M. Zhou, Y.S. Feng and L.D. Zhang: Chem. Phys. Lett. Vol. 369 (2003) No. 5-6, p.610.

Google Scholar

[27] B.K. Ridley, in: Quantum Process in Semiconductors, edtied by Clarendon, Oxford (1982).

Google Scholar

[28] Y. Ai, C. Xue, C. Sun, L. Sun, H. Zhang, F. Wang, H. Li and J. Chen: Mater. Lett. Vol. 61 (2007) No. 13, p.2833.

Google Scholar

[29] Y.L. Sun, X.B. Zhang, Y.S. Ning: J. Inorg. Mater., Vol. 17 (2002) No. 2, p.337.

Google Scholar